Semi-Supervised Semantic Segmentation with High- and Low-level Consistency

TPAMI 2019

论文原文

code

创新点:

利用两个分支结构分别处理low-level和high-level的特征,进行半监督语义分割

网络结构



上分支:Semi-Supervised Semantic Segmentation GAN (s4GAN)

下分支:Multi-Label Mean Teacher (MLMT)

s4GAN

训练segmentation network \(S\)

segmentation network \(S\)的损失函数由以下三部分组成:

  1. Cross-entropy loss

    输入原图到segmentation network \(S\)中,对于labeled images,输出的分割结果\(S(x^l)\)和标签\(y^l\)对比,计算交叉熵损失\(L_{ce}\)

  2. Feature matching loss

    为了使得分割结果\(S(x^l)\)和标签\(y^l\)的特征分布尽可能一致,本文计算分割结果\(S(x^l)\)和标签\(y^l\)的特征分布差异mean discrepancy,并设计Feature matching loss



    上式中\(D_k\)表示discriminator的第\(k\)层

    注:此Feature matching loss适用于有标签和无标签的数据
  3. Self-training loss

    本文认为,在训练过程中generator和discriminator需要达到某种平衡,如果discriminator过于strong,则无法给generator任何有用的学习信号。因此,对于unlabeled image,本文每次将generator产生的,可以成功欺骗discriminator的分割图当作真实标签,用于监督学习。由此可以促使segmentation network(即generator)变强,且一定程度上阻碍discriminator的进步,不希望discriminator过于强大,破坏平衡。

    具体而言,discriminator在s4GAN中用于在image-level判断一张分割图是真实标签(real label),还是segmentation network的输出(fake label),根据为真实标签的可能性输出一个0~1之间的概率值(若为真实标签,则输出1)

    文章设置闸值,对于输出大于闸值的分割图,作为高质量的预测图,当作真实标签,用于监督学习,并计算交叉熵损失

s4GAN总损失:

训练discriminator

discriminator的输入包含原图image和对应标签,训练discriminator,希望discriminator能给真实标签打高分,给fake label打低分。具体损失函数和传统的GAN相同。



(channel wise)

MLMT

该分支包含两个网络,分别为学生网络和老师网络,训练时,一张image经过微小的,不同的扰动之后分别输入学生网络和老师网络,学生网络和老师网络使用online ensemble的weight(老师网络是学生网络学习的目标,老师网络的权重在学生网络的基础上根据指数平均移动线移动,详见论文)。本文希望学生网络的输出和老师网络的输出尽可能一致,则对于所有image,使用均方误差来衡量两个网络输出的差异,对于labeled image,同时使用类交叉熵函数计算损失

Network Fusion

简单的通过deactivate segmentation networks的输出中没有出现在input image中的图片来融合两个网络的结果。

对于一张image分割图的一个类别c的mask,尺寸为\(HxWx1\),(对于每一个像素?)如果学生网络的输出(soft label)小于设定的某个闸值,则令segmentation network的输出为0,否则segmentation network的输出不变。

实验

数据集:

PASCAL VOC 2012 segmentation benchmark, the PASCAL-Context dataset, and the Cityscapes dataset.

网络具体结构:

segmentation network:

deeplab v2

discriminator:

4层卷积层,通道数分别为\({64,128,256,512}\),卷积核大小为4x4,每个卷积层后面都有一个negative slope of 0.2的Leaky-ReLU层和一个dropout概率为0.5的dropout层(该高概率的dropout layer对于GAN的稳定训练非常关键)。最后一个卷积层后面是一个全局平均池化层和全连接层,全局平均池化的输出用于Feature matching loss的计算

学生网络和老师网络:

ResNet101(在imagenet上预训练)

实验结果:

疑问:

  1. 网络融合的目的?
  2. self-train loss的设定(为阻止discriminator变强)?

[论文][半监督语义分割]Semi-Supervised Semantic Segmentation with High- and Low-level Consistency的更多相关文章

  1. [论文笔记][半监督语义分割]Universal Semi-Supervised Semantic Segmentation

    论文原文原文地址 Motivations 传统的训练方式需要针对不同 domain 的数据分别设计模型,十分繁琐(deploy costs) 语义分割数据集标注十分昂贵,费时费力 Contributi ...

  2. [论文][半监督语义分割]Adversarial Learning for Semi-Supervised Semantic Segmentation

    Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法 ...

  3. OSVOS 半监督视频分割入门论文(中文翻译)

    摘要: 本文解决了半监督视频目标分割的问题.给定第一帧的mask,将目标从视频背景中分离出来.本文提出OSVOS,基于FCN框架的,可以连续依次地将在IMAGENET上学到的信息转移到通用语义信息,实 ...

  4. 2018年发表论文阅读:Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation

    记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supe ...

  5. 论文学习:Fully Convolutional Networks for Semantic Segmentation

    发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...

  6. 论文笔记《Fully Convolutional Networks for Semantic Segmentation》

    一.Abstract 提出了一种end-to-end的做semantic segmentation的方法,也就是FCN,是我个人觉得非常厉害的一个方法. 二.亮点 1.提出了全卷积网络的概念,将Ale ...

  7. 【Semantic segmentation Overview】一文概览主要语义分割网络(转)

    文章来源:https://www.tinymind.cn/articles/410 本文来自 CSDN 网站,译者蓝三金 图像的语义分割是将输入图像中的每个像素分配一个语义类别,以得到像素化的密集分类 ...

  8. 利用NVIDIA-NGC中的MATLAB容器加速语义分割

    利用NVIDIA-NGC中的MATLAB容器加速语义分割 Speeding Up Semantic Segmentation Using MATLAB Container from NVIDIA NG ...

  9. A Three-Stage Self-Training Framework for Semi-Supervised Semantic Segmentation

    论文阅读笔记: A Three-Stage Self-Training Framework for Semi-Supervised Semantic Segmentation 基本信息 \1.标题:A ...

随机推荐

  1. BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

    BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition 目录 BBN: Bi ...

  2. 使用 jQuery 选择器获取页面元素,然后利用 jQuery 对象的 css() 方法设置其 display 样式属性,从而实现显示和隐藏效果。

    查看本章节 查看作业目录 需求说明: 使用 jQuery 选择器获取页面元素,然后利用 jQuery 对象的 css() 方法设置其 display 样式属性,从而实现显示和隐藏效果. 具体要求如下: ...

  3. IPv6地址格式

    1.说明 IPv6是互联网协议的第六版, 现有IPv4只支持大概40亿个网络地址, 而IPv6支持3.4e38个网络地址. IPv4的地址长度是32位(bit), IPv6的地址长度是128位. 尽管 ...

  4. 过年有燃放烟花爆竹禁令那我们用css写一个仙女棒烟花看看吧

    先是去找了一张简易画的烟花照片,可以看出主要结构为歪曲的线条结构. 方案一: 弯曲的线条第一反应到的就是"圆角边框": width: 200px; height: 200px; b ...

  5. centos6.5-nginx搭建

    一.安装nginx 1.安装相关组件 yum -y install pcre-devel zlib-devel 2.创建启动用户 useradd -M -s /sbin/nologin nginx t ...

  6. 通过 v-once 创建低开销的静态组件

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <script s ...

  7. 不用下载Axure RP Extension for Chrome插件查看原型文件的方法

    Axure RP Extension for Chrome是一款谷歌插件,主要可以用来查看原型文件.以前安装插件的时候总是找半天资源,很麻烦,最近发现了一种新方法可以不用下载插件资源.其实在原型文件中 ...

  8. Mysql字符串字段判断是否包含某个字符串的方法

    方法一:like SELECT * FROM 表名 WHERE 字段名 like "%字符%"; 方法二:find_in_set() 利用mysql 字符串函数 find_in_s ...

  9. RabbitMQ --- 直连交换机 【 无回调方法,不能获取消费结果 】

    1.前言 消息队列除了kafka 外,还有许多种,比如RabbitMQ .ActiveMQ.ZeroMQ.JMQ等. 老牌的ActiveMQ ,底层使用Java写的,资源消耗大,速度也慢,但是适合 J ...

  10. Python调用aiohttp

    1. aiohttp安装 pip install aiohttp 1.1. 基本请求用法 async with aiohttp.get('https://github.com') as r: awai ...