CF1039D-You Are Given a Tree【根号分治,贪心】
正题
题目链接:https://www.luogu.com.cn/problem/CF1039D
题目大意
给出\(n\)个点的一棵树,然后对于\(k\in[1,n]\)求每次使用一条长度为\(k\)的链覆盖树并且不能重复覆盖点时最大覆盖条数。
\(1\leq n\leq 10^5\)
解题思路
先考虑暴力怎么做,因为每条链的价值都是一,显然的一种贪心思想是能合并的就合并(没有让出一条链给另一条链腾空间的必要)。
这样的复杂度是\(O(n)\)的,但是对于每个都要求所以需要优化。
之后考虑上根号分治,对于一个\(k\)的答案显然不会超过\(\frac{n}{k}\),所以可以当\(k\leq \sqrt n\)的时候暴力做,然后由于答案递增,大于\(\sqrt n\)的\(k\)答案的取值不会超过\(\sqrt n\),每次二分断点即可。时间复杂度\(O(n\sqrt n\log n)\)。
其实发现这样还是不够快,可以找到一个更好的阈值,设为\(T\),那么前面的复杂度就是\(T\),后面的复杂度就是\(\frac{n}{T}\log n\),用平衡规划的思想当\(T=\frac{n}{T}\log n\)时最快,也就是\(T=\sqrt{n\log n}\)时最快了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e5+10;
struct node{
int to,next;
}a[N<<1];
int n,tot,cnt,dfn[N],ls[N],fa[N],f[N];
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dfs(int x){
dfn[++cnt]=x;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa[x])continue;
fa[y]=x;dfs(y);
}
return;
}
int solve(int k){
if(k==1)return n;
int ans=0;
for(int i=1;i<=n;i++)f[i]=1;
for(int i=n;i>=1;i--){
int x=dfn[i];
if(f[x]&&f[fa[x]]){
if(f[x]+f[fa[x]]>=k)
ans++,f[fa[x]]=0;
else f[fa[x]]=max(f[fa[x]],f[x]+1);
}
}
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
dfs(1);
int T=sqrt((double)n*(log(n)/log(2))),last,z=T+1;
for(int i=1;i<=T;i++)printf("%d\n",last=solve(i));
while(z<=n){
int l=z+1,r=n,k=solve(z);
while(l<=r){
int mid=(l+r)>>1;
if(solve(mid)<k)r=mid-1;
else l=mid+1;
}
for(int i=z;i<=r;i++)
printf("%d\n",k);
z=r+1;
}
return 0;
}
CF1039D-You Are Given a Tree【根号分治,贪心】的更多相关文章
- CF1039D You Are Given a Tree 根号分治,贪心
CF1039D You Are Given a Tree LG传送门 根号分治好题. 这题可以整体二分,但我太菜了,不会. 根号分治怎么考虑呢?先想想\(n^2\)暴力吧.对于每一个要求的\(k\), ...
- CF1039D You Are Given a Tree 根号分治、二分、贪心
传送门 似乎直接做不太好做-- 当你不会做的时候就可以考虑根号算法了(或许是这样的 考虑如果只有一个询问如何计算答案. 显然是可以贪心的,思路与NOIP2018D1T3是相同的.每一个点向上传一条链, ...
- Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...
- [CF1039D]You Are Given a Tree[贪心+根号分治]
题意 给你\(n\)个点的树,其中一个简单路径的集合被称为\(k\)合法当且仅当树的每个节点最多属于一条路径,且每条路径包含\(k\)个节点.对于每个\(k(k \in [1,n])\),输出最多的\ ...
- CF804D Expected diameter of a tree 树的直径 根号分治
LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) ...
- 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 xor (根号分治)
xor There is a tree with nn nodes. For each node, there is an integer value a_iai, (1 \le a_i \le ...
- BZOJ.4320.[ShangHai2006]Homework(根号分治 分块)
BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复 ...
- [CF1039D]You Are Given a Tree
[CF1039D]You Are Given a Tree 题目大意: 给定一棵\(n(n\le10^5)\)个节点的树.对于每一个正整数\(k(1\le k\le n)\),求最多能找出多少条包含\ ...
- CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表
传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...
随机推荐
- 单链表(Java--尚硅谷)
基础知识 大体结构和C++的链表差不多 补充之前不知道的:链表分两类,带和不带头结点的链表 现在才知道,Java没有像C/C++那样的指针 首先创建一个LinkList类,然后把链表的各个功能添加进去 ...
- 有限次数的Undo&Redo的C#实现
为了实现Undo和Redo,必须要在程序中保存起程序的运行状态,从而能够在Undo时跳转到前一个状态和在Redo时跳转到下一个状态.为了实现状态的维护,我采用了两个栈来分别保存Undo操作的状态和Re ...
- docker安装与配置gitlab详细过程
docker安装与配置gitlab详细过程 1.打开网易镜像中心 https://c.163yun.com/hub#/m/home/ 2.搜索gitlab,获取下载地址.例如:docker pull ...
- 微信小程序的button按钮设置宽度无效
亲,你是不是也遇到了微信小程序的button按钮设置宽度无效.让我来告诉你怎么弄 方法1. 样式中加入!important,即:width: 100% !important; wxss代码示例 1 2 ...
- Learning ROS: Recording and playing back data
本文主要部分来源于ROS官网的Tutorials. Description: This tutorial will teach you how to record data from a runnin ...
- 求方程 p+q+r+s+t=pqrst 的全体自然数解(约定p<=q<=r<=s<=t)
解:方程左右的表达式分别记为u和v. 由题设有5t>=u. 0本来是不算入自然数的,现在的趋势是把0也算作自然数. 若p=0,则v=0,为使得u=0成立,q.r.s.t都必需为0. 这样就得到方 ...
- Spring Boot 入门系列(二十三)整合Mybatis,实现多数据源配置!
d之前介绍了Spring Boot 整合mybatis 使用注解方式配置的方式实现增删改查以及一些复杂自定义的sql 语句 .想必大家对spring boot 项目中,如何使用mybatis 有了一定 ...
- Windows内核基础知识-8-监听进程、线程和模块
Windows内核基础知识-8-监听进程.线程和模块 Windows内核有一种强大的机制,可以在重大事件发送时得到通知,比如这里的进程.线程和模块加载通知. 本次采用链表+自动快速互斥体来实现内核的主 ...
- hibernate关联关系(一对多)
什么是关联(association)关联指的是类之间的引用关系.如果类A与类B关联,那么被引用的类B将被定义为类A的属性.例如: class B{ private String name; } pub ...
- Linux下SSH以及SSH秘钥
一.基于秘钥方式实现远程连接 第一步:创建密钥对(在管理端服务器上操作) 中间的输入项可以直接回车 ssh-keygen -t dsa 第二步:分发公钥(在管理端服务器执行) 这个步骤需要输入一个ye ...