系列

本节介绍数据在 Snuba 中的组织方式以及面向用户的数据如何映射到底层数据库(如: Clickhouse)。

Snuba 数据模型横向分为逻辑模型(logical model)和物理模型(physical model)。逻辑数据模型是 Snuba 客户端通过 Snuba 查询语言可见的。此模型中的元素可能会也可能不会 1:1 映射到数据库中的表。相反,物理模型将 1:1 映射到数据库概念(如表和视图)。

这种划分背后的原因是,它允许 Snuba 通过逻辑数据模型公开一个稳定的接口,并在内部执行复杂的映射,对不同的表(物理模型的一部分)执行查询,以一种对 client 透明的方式提高性能。

本节的其余部分概述了组成两个模型的概念以及它们如何相互连接。

下面描述的主要概念是数据集(dataset)、实体(entity)和存储(storage)。

数据集

DatasetSnuba 数据的命名空间。它提供了自己的 schema,并且在逻辑模型和物理模型方面都独立于其他数据集。

数据集的示例是 discover(发现)outcomes(结果)sessions(会话)。他们之间没有任何关系。

数据集可以看作是定义其抽象数据模型及其具体数据模型的组件的容器,如下所述。

实体和实体类型

Snuba 向客户端公开的逻辑数据模型的基本块(fundamental block)是实体。在逻辑模型中,实体表示抽象概念(如 transactionerror)的实例。在实践中,Entity 对应于数据库表中的一行。Entity Type 是实体的类(如 Errors 或 Transactions)。

逻辑数据模型由一组 Entity Types 及其 relationships 组成。

每个 Entity Type 都有一个 schema,该模式由具有相关抽象数据类型的字段列表定义。 Dataset 的所有 Entity Types(可以有多个)的 schema 组成了对 Snuba client 可见的逻辑数据模型,Snuba 查询根据该模型进行验证。 不应该暴露较低级别的概念。

Entity Types 明确包含在 Dataset 中。一个 Entity Type 不能出现在多个数据集中。

实体类型之间的关系

数据集中的实体类型在逻辑上是相关的。支持两种类型的关系:

  • 实体集关系(Entity Set Relationship)。这模仿了外键。这种关系旨在允许实体类型之间的连接。 目前它只支持一对一一对多的关系。
  • 继承关系(Inheritance Relationship)。这模仿了名义上的子类型(subtyping)。 一组实体类型可以共享一个父实体类型。子类型从父类型继承 schema。 从语义上讲,父实体类型必须表示其类型从其继承的所有实体的联合。还必须能够查询父实体类型。这不能仅仅是一种逻辑关系。

实体类型和一致性

Entity TypeSnuba 可以提供一些强大的数据一致性保证的最大单元。具体来说,可以查询期望 Serializable Consistency(可序列化的一致性) 的实体类型。这不会扩展到跨越多个实体类型的任何查询,在这种情况下,我们最多将具有最终的一致性。

这也会对订阅查询(Subscription queries)产生影响。 这些一次只能对一种实体类型起作用,否则,它们将需要实体类型之间的一致性,而我们不支持这种一致性。

请注意!

准确地说,一致性单位(取决于 Entity Type)甚至可以更小,并且取决于数据摄取主题(data ingestion topics)的分区方式(例如 project_id),实体类型是 Snuba 允许的最大值。

存储

Storage 表示并定义 Dataset 的物理数据模型。每个 Storage 表示在物理数据库概念中具体化,如表或具体化视图。因此,每个存储都有一个由字段及其类型定义的 schema,该字段反映了 storage 映射到的 DB table/view 的物理模式,并且能够提供生成 DDL 语句的所有详细信息,以在数据库上构建表。

Storage 能够将上面讨论的逻辑模型中的逻辑概念映射到数据库的物理概念,因此每个 Storage 都需要与一个 Entity Type 相关联。具体来说:

  • 每个 Entity Type 必须由至少一个 Readable Storage(我们可以在其上运行查询的 Storage)支持,但可以由多个 Storage(例如预聚合物化视图pre-aggregate materialized view)支持。每个 Entity Type 的多个 Storage 旨在允许查询优化。
  • 每个 Entity Type 必须由一个且仅一个用于摄取数据和填充数据库表的 Writable Storage 支持。
  • 每个 Storage 仅支持一种 Entity Type

示例

本节提供了一些示例,说明 Snuba data model 如何表示一些现实世界模型。

这些案例研究不一定反映当前的 Sentry production model,也不一定是同一部署的一部分。它们必须被视为孤立的例子。

单一实体数据集

这看起来像 Sentry 使用的 Outcomes 数据集。这实际上并没有反映截至 2020 年 4 月的 Outcomes。尽管设计 Outcomes 应该朝着这个方向发展。

Dataset 只有一种 Entity Type,代表数据集摄取的单个 Outcome。查询 raw Outcome 非常缓慢,所以我们有两个 Storage。一个是反映我们摄取的数据的 Raw storage 和一个计算每小时聚合的 materialized view,查询效率更高。Query Planner 将根据查询是否可以在聚合数据上执行来选择 storage

多个实体类型数据集

此数据集的典型示例是 Discover 数据集。

这具有三种 Entity TypeErrorsTransactions 并且它们都继承自 Events。 这些形成了逻辑数据模型,因此查询 Events Entity Type 给出了 TransactionsErrors 的联合,但它只允许查询中存在两者之间的公共字段。

出于性能原因,Errors Entity Type 由两个 Storage 支持。 一个是用于摄取数据的主要 Errors Storage,另一个是read only view(只读视图),在查询时对 Clickhosue 的负载较少,但提供较低的一致性保证。 Transactions 只有一个 storage,并且有一个 Merge Table 来为 Events 提供服务(本质上是两个表联合的视图)。

连接实体类型

这是一个简单的数据集示例,其中包含可以在查询中连接在一起的多个实体类型。

GroupedMessageGroupAssingee 可以是带有 Errorsleft join 查询的一部分。其余部分与前面示例中讨论的内容类似。

Sentry 监控 - Snuba 数据中台架构(Data Model 简介)的更多相关文章

  1. Sentry 监控 - Snuba 数据中台架构(Query Processing 简介)

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  2. Sentry 监控 - Snuba 数据中台架构(SnQL 查询语言简介)

    本文描述了 Snuba 查询语言 (SnQL). 系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒 ...

  3. Sentry 监控 - Snuba 数据中台架构(编写和测试 Snuba 查询)

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  4. Sentry 监控 - Snuba 数据中台架构简介(Kafka+Clickhouse)

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  5. Sentry 监控 - Snuba 数据中台本地开发环境配置实战

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  6. Sentry 监控 - 私有 Docker Compose 部署与故障排除详解

    内容整理自官方开发文档 系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Map ...

  7. Sentry 监控 - Environments 区分不同部署环境的事件数据

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  8. Sentry 监控 - 全栈开发人员的分布式跟踪 101 系列教程(第一部分)

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  9. 【转】阿里架构总监一次讲透中台架构,13页PPT精华详解

    转:https://blog.csdn.net/u011323949/article/details/99542576 本文整理了阿里几位技术专家,如架构总监 谢纯良,中间件技术专家 玄难等几位大牛, ...

随机推荐

  1. Springboot中配置druid

    pom文件信息: <!--引入druid数据源--> <!-- https://mvnrepository.com/artifact/com.alibaba/druid --> ...

  2. 快速创建Spring web项目

    第一步,把包和文件夹建好 第二步.pom文件添加依赖 放到properties标签内 <spring_version>4.1.2.RELEASE</spring_version> ...

  3. android Handler消息通信

    1 package com.example.testhandler; 2 3 import android.os.Bundle; 4 import android.os.Handler; 5 impo ...

  4. docker容器 如何精简镜像减小体积

    写在前面 我们在上篇<Docker容器 关于镜像构建的安全问题>一起学习了如何构建一个基于安全的镜像,这篇小作文我们会学习镜像构建的另一个关键性问题,为何别人打造的镜像只有10MB而我的有 ...

  5. Oracle存储过程锁表

    存储过程: 解决方法如下: 1:查V$DB_OBJECT_CACHE SELECT * FROM V$DB_OBJECT_CACHE WHERE name='CRM_LASTCHGINFO_DAY' ...

  6. Nginx使用Lua模块实现WAF

    前言:最近一段时间在写加密数据功能,对安全相关知识还是缺少积累,无意间接触到了WAF相关知识,刚好Nginx可以实现WAF功能,也简单学习了Lua这门语言,分享下 一.WAF产生的背景 过去企业通常会 ...

  7. Adaptive AUTOSAR 学习笔记 16 - 时间同步和网络管理

    本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20-11 版本 AUTOSAR_EXP_PlatformDesign.pdf.作者:Zijian/TENG 原文地 ...

  8. C++模板简介

    模板是C++支持参数化多态的工具,使用模板可以使用户为类或者函数声明一种一般模式,使得类中的某些数据成员或者成员函数的参数.返回值取得任意类型. 模板是一种对类型进行参数化的工具: 通常有两种形式:函 ...

  9. Servlet学习笔记(二)之Servlet路径映射配置、Servlet接口、ServletConfig、ServletContext

    Servlet路径映射配置 要使Servlet对象正常的运行,需要进行适当的配置,以告诉Web容器哪个请求调用哪个Servlet对象处理,对Servlet起到一个注册的作用.Servlet的配置信息包 ...

  10. Hadoop day1

    Hadoop就是存储海量数据和分析海量数据的工具 1.概念 Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce ...