正题

题目链接:https://www.luogu.com.cn/problem/CF1119H


题目大意

\(n\)个可重集,第\(i\)个里有\(x\)个\(a_i\),\(y\)个\(b_i\),\(z\)个\(c_i\)。

对于每个\(t\in[0,2^k)\)求每个集合里取出一个数使它们异或起来等于\(t\)的方案数。


解题思路

如果直接\(n\)个东西\(FWT\)起来肯定过不了,我们需要根据每个集合里只有三种数这个性质来优化。

因为是\(xor\)卷积,所以第\(i\)个位置\(FWT\)之后对\(j\)造成的影响是\((-1)^{cnt(i\&j)}\)(其中\(cnt(x)\)表示\(x\)在二进制下\(1\)的个数)

那么就有

\[FWT(S_i)=\sum_{i=1}^{2^k-1}(-1)^{cnt(j\&a_i)}x+(-1)^{cnt(j\& b_i)}y+(-1)^{cnt(j\&b_i)}z
\]

现在我们就可以单独考虑每个\(x,y,z\)的贡献了,然后每个\(FWT(S_i)[j]\)有\(8\)个状态,为了方便我们缩减一下状态先。

首先我们先让所有的\(x\)都取到,也就是让所有的\(b_i=b_i\ xor\ a_i,c_i=c_i\ xor\ a_i\),然后询问答案的时候我们再异或上一个\(a\)的异或和即可。

现在每个\(FWT(S_i)[j]\)有\(4\)种状态,分别是\((x+y+z),(x+y-z),(x-y+z),(x-y-z)\)。定义这些状态数量分别为\(a_1,a_2,a_3,a_4\)

我们先考虑集合\(i\)的每种状态中\(y\)的影响\(F_i\),有\(F_i[k]=cnt(k\& a_i)\),而所有集合的影响和就是\(\sum_{i=1}^nF_i\)。设\(G_i=IFWT(F_i)\)那么显然有\(G_i[b_i]=1\)其他都为\(0\)。

然后影响和就是

\[\sum_{i=1}^nFWT(G_i)=FWT(\sum_{i=1}^nG_i)
\]

所以直接把\(G\)都加起来然后\(FWT\)就好了,定义\(y\)的影响为\(c_1\)。

然后再同理搞出\(z\)和\(y+z\)的影响,分别为\(c_2,c_3\),那么就有方程组

\[\left\{\begin{matrix}
a_1+a_2+a_3+a_4=n\\
a_1+a_2-a_3-a_4=c_1\\
a_1-a_2+a_3-a_4=c_2\\
a_1-a_2-a_3+a_4=c_3
\end{matrix}\right.\]

解出来就好了,然后用快速幂算出来\(F=\prod_{i=1}^nFWT(S_i)\),求一遍\(IFWT(F)\)即可。

时间复杂度\(O(\ 2^kk+n\log(x+y+z)\ )\)


\(code\)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10,P=998244353;
const ll inv2=(P+1)/2;
ll n,k,x,y,z,xs;
ll f1[N],f2[N],f3[N],f[N];
ll power(ll x,ll b){
ll ans=1;x%=P;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void FWT(ll *f,ll n,ll op){
for(ll p=2;p<=n;p<<=1)
for(ll k=0,len=p>>1;k<n;k+=p)
for(ll i=k;i<k+len;i++){
ll x=f[i],y=f[i+len];
if(op==1){
f[i]=x+y;
f[i+len]=x-y;
}
else{
f[i]=(x+y)*inv2%P;
f[i+len]=(x-y)*inv2%P;
}
}
return;
}
signed main()
{
scanf("%lld%lld",&n,&k);k=1<<k;
scanf("%lld%lld%lld",&x,&y,&z);
for(ll i=1;i<=n;i++){
ll a,b,c;
scanf("%lld%lld%lld",&a,&b,&c);
xs^=a;b^=a;c^=a;
f1[b]++;f2[c]++;f3[b^c]++;
}
FWT(f1,k,1);FWT(f2,k,1);FWT(f3,k,1);
for(ll i=0;i<k;i++){
ll c1=f1[i],c2=f2[i],c3=f3[i];
ll a1,a2,a3,a4;
a4=(c3-c1-c2+n)/4;
a3=-(c1-n+2ll*a4)/2;
a2=-(c2-n+2ll*a4)/2;
a1=n-a2-a3-a4;
f[i]=power(x+y+z,a1)%P*power(x+y-z,a2)%P;
f[i]=f[i]*power(x-y+z,a3)%P*power(x-y-z,a4)%P;
}
FWT(f,k,-1);
for(ll i=0;i<k;i++)
printf("%lld ",(f[i^xs]+P)%P);
return 0;
}

CF1119H-Triple【FWT】的更多相关文章

  1. LOJ2269 [SDOI2017] 切树游戏 【FWT】【动态DP】【树链剖分】【线段树】

    题目分析: 好题.本来是一道好的非套路题,但是不凑巧的是当年有一位国家集训队员正好介绍了这个算法. 首先考虑静态的情况.这个的DP方程非常容易写出来. 接着可以注意到对于异或结果的计数可以看成一个FW ...

  2. hdu6057 Kanade's convolution 【FWT】

    题目链接 hdu6057 题意 给出序列\(A[0...2^{m} - 1]\)和\(B[0...2^{m} - 1]\),求所有 \[C[k] = \sum\limits_{i \; and \; ...

  3. CSU1911 Card Game 【FWT】

    题目链接 CSU1911 题解 FWT模板题 #include<algorithm> #include<iostream> #include<cstdlib> #i ...

  4. BZOJ4589 Hard Nim 【FWT】

    题目链接 BZOJ4589 题解 FWT 模板题 #include<algorithm> #include<iostream> #include<cstdlib> ...

  5. [JZOJ6088] [BZOJ5376] [loj #2463]【2018集训队互测Day 1】完美的旅行【线性递推】【多项式】【FWT】

    Description Solution 我们考虑将问题一步步拆解 第一步求出\(F_{S,i}\)表示一次旅行按位与的值为S,走了i步的方案数. 第二步答案是\(F_{S,i}\)的二维重复卷积,记 ...

  6. 【杂题】[AGC034F] RNG and XOR【集合幂级数】【FWT】【DP】

    Description 你有一个随机数生成器,它会以一定的概率生成[0,2^N-1]中的数,每一个数的概率是由序列A给定的,Pi=Ai/sum(Ai) 现在有一个初始为0的数X,每一轮随机生成一个数v ...

  7. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  8. bzoj4589-Hard Nim【FWT】

    正题 题目链接:https://darkbzoj.tk/problem/4589 题目大意 求有多少个长度为\(n\)的数列满足它们都是不大于\(m\)的质数且异或和为\(0\). 解题思路 两个初始 ...

  9. hdu5909-Tree Cutting【FWT】

    正题 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5909 题目大意 给出\(n\)和\(m\)(\(m=2^k\)).再给出一个大小为\(n\)的树 ...

随机推荐

  1. 9、二进制安装K8s之增加node

    二进制安装K8s之增加node 1.复制文件,要部署几台就直接复制即可 #二进制文件 scp /data/k8s/bin/{kubelet,kube-proxy} root@192.168.100.1 ...

  2. C++ 计算MD5

    头文件: #pragma once #ifndef MD5_H #define MD5_H #include <string> #include <fstream> /* Ty ...

  3. mybatis学习日志二

    一.动态sql语句 if语句 if+where语句 if+set语句 choose(when,otherwise)语句 trim语句 sql片段 foreach语句 总结 bean部分的User类代码 ...

  4. WPF 勾选划线

    最近项目需要一个左右侧一对多的划线功能 我们先来看一下效果秃: 主要功能: 支持动态添加 支持复选 支持修改颜色 支持动态宽度 主要实现:事件的传递 应用场景:购物互选,食品搭配,角色互选 数据源 左 ...

  5. linux(1)------vmvear虚拟机安装linux

    1.VMvare14(个人下载,软件付费,自行解决) 2.CentOS下载           https://www.centos.org/download/    官方网址,后期会跳转本地镜像站 ...

  6. JavaWeb 三大器--Listener、Filter 和Interceptor 总结

    说明:web.xml的加载顺序是:[Context-Param]->[Listener]->[Filter]->[Servlet],而同个类型之间的实际程序调用的时候的顺序是根据对应 ...

  7. MySQL-SQL基础-子查询

    #子查询-某些情况下,当进行查询的时候,需要的条件是另外一个select语句的结果,这个时候就要用到子查询.用于子查询的关键字主要包括: in.not in.=.!=.exists.not exist ...

  8. Python实现Thrift Server

    近期在项目中存在跨编程语言协作的需求,使用到了Thrift.本文将记录用python实现Thrift服务端的方法. 环境准备 根据自身实际情况下载对应的Thrift编译器,比如我在Windows系统上 ...

  9. Python - 面向对象编程 - __str__()

    为什么要讲 __str__ 在 Python 中,直接 print 一个实例对象,默认是输出这个对象由哪个类创建的对象,以及在内存中的地址(十六进制表示) 假设在开发调试过程中,希望使用 print ...

  10. adb 常用命令大全(5)- 日志相关

    前言 Android 系统的日志分为两部分 底层的 Linux 内核日志输出到 /proc/kmsg Android 的日志输出到 /dev/log 语法格式 adb logcat [<opti ...