洛谷 P5665 [CSP-S2019] 划分
链接:
题意:
给出 \(n\) 个整数 \(a_i\) ,你需要找到一些分界点 \(1 \leq k_1 \lt k_2 \lt \cdots \lt k_p \lt n\),使得
\(\sum\limits_{i=1}^{k_1} a_i \leq \sum\limits_{i=k_1+1}^{k_2} a_i \leq \cdots \leq \sum\limits_{i=k_p+1}^{n} a_i\)。
注意 \(p\) 可以为 \(0\) 且此时 \(k_0 = 0\)。
请你最小化
\((\sum\limits_{i=1}^{k_1} a_i)^2 + (\sum\limits_{i=k_1+1}^{k_2} a_i)^2 + \cdots + (\sum\limits_{i=k_p+1}^{n} a_i)^2\)。
分析:
根据完全平方公式有:\((a+b)^2\geq a^2+b^2\)
所以分段比不分段更优。其次,对于一个数 \(x\),将他分到左边和右边会造成 \(2x*sum_{side}+x^2\) 的贡献(\(sum\) 指两区间和),又因为 \(sum_L\leq sum_R\) 所以尽量分到左边更优。也就是说,最后一段和最小时,答案最优。(这个策略还是能猜出来,只是不敢确定)。于是就有后面的\(O(n^2)\) dp 了。
算法:
首先维护一个前缀和 \(sum\) (和上文 \(sum\) 不同)。设 \(d[i]\) 为 \(i\) 结尾,最后一段最小时上一段的结尾位置,于是有 \(d[i]=max\{j|sum[i]-sum[j]\geq sum[j]-sum[d[j]]\}\)。从 \(i\) 向左循环遇到的第一个满足条件的位置就是 \(d[i]\)。输出时从 \(n\) 不停向它的 \(d\) 值跳,一直跳到 \(0\)。复杂度 \(O(n^2)\)。
优化:
根据上述算法可以写出这样的程序:
for(int i=1;i<=n;i++){
for(int j=i-1;j>=1;j--)
if(sum[i]-sum[j]<sum[j]-sum[d[j]]) continue;
d[i]=j; break;
}
int now=n;
while(now){
int t=sum[now]-sum[d[now]];
ans+=t*t;
now=d[now];
}
\(O(n^2)\) 复杂度可以通过64分的好成绩,但是看到 \(2\leq n\leq4\times10^7\),这说明我们需要一个 \(O( n )\) 或实(hen)现(neng)良(ka)好(chang)的 \(O(n\log n)\)。
回顾算法,发现判断 \(j\) 是否合法时的柿子:
\(sum[i]-sum[j]\geq sum[j]-sum[d[j]]\)
可以继续改写:
\(2*sum[j]-sum[d[j]]\leq sum[i]\)
此时左边只与 \(j\) 有关右边只与 \(i\) 有关。设 \(A(j)=2*sum[j]-sum[d[j]]\) 。显然 \(A(j)\) 越小,\(j\) 越可能成为合法答案,所以当存在 \(j_1<j_2\) 且 \(A(j_1)>A(j_2)\) 时,\(j_2\) 比 \(j_1\) 更优。
又有 \(sum[i]\lt sum[i+1]\) 所以当一个 \(j\) 满足 \(A(j)\leq sum[i]\) 时,它也满足 \(A(j)\leq sum[i+1]\)。
基于以上两点我们可以维护出一个 \(A(j)\) 单调上升且 \(j\) 单调上升的单调队列,每次转移时找到最大的满足 \(A(j)\leq sum[i]\) 的 \(j\),小于 \(j\) 的状态可以舍弃,更新 \(d[i]\) 后将 \(A(i)\) 加入队列尾并弹出 \(A(k)>A(i)\) 的状态 \(k\),每个点最多进出1次,所以复杂度是 \(O(n)\)。
于是我们可以这样维护 \(d[i]\):
for(int i=1;i<=n;i++){
while(head<tail&&A(q[head+1])<=sum[i])head++;
d[i]=q[head];
while(head<tail&&A(i)<A(q[tail]))tail--;
q[++tail]=i;
}
另外的,此题最后三个测试点相当毒瘤,输入相当占时间和空间,数据范围会爆 long long。我们不得不选择高精(或考场上不敢写的__int128),同时需要对空间和时间能够精确把控,最好还是自己慢慢调,可以锻炼自己的代码能力。
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define in read()
inline int read(){
int p=0,f=1;
char c=getchar();
while(c>'9'||c<'0'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){p=p*10+c-'0';c=getchar();}
return p*f;
}
const int N=4e7+5;
ll sum[N];
int d[N],q[N],n,type,head,tail;
inline __int128 A(int i){return 2*sum[i]-sum[d[i]];}
//sub23~25
const int M=1e5+5;
const int mod=1ll<<30;
ll x,y,z,m;
int p[M],l[M],r[M];
ll b[N];
//
__int128 ans;
void print(__int128 x){
if(x==0){
cout<<0;
return ;
}
string res="";
while(x){
res+=x%10+'0';
x/=10;
}
reverse(res.begin(),res.end());
cout<<res;
}
signed main(){
n=in,type=in;
if(type==0)
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+in;
else{
x=in,y=in,z=in,b[1]=in,b[2]=in,m=in;
for(int i=1;i<=m;i++)
p[i]=in,l[i]=in,r[i]=in;
for(int i=3;i<=n;i++)
b[i]=((x*b[i-1]%mod+y*b[i-2]%mod)%mod+z)%mod;
int now=0;
for(int i=1;i<=n;i++){
if(i>p[now])now++;
sum[i]=sum[i-1]+b[i]%(r[now]-l[now]+1)+l[now];
}
}
for(int i=1;i<=n;i++){
while(head<tail&&A(q[head+1])<=sum[i])head++;
d[i]=q[head];
while(head<tail&&A(i)<A(q[tail]))tail--;
q[++tail]=i;
}
int now=n;
while(now){
__int128 t=sum[now]-sum[d[now]];
ans+=t*t;
now=d[now];
}
print(ans);
return 0;
}
可能是因其毒瘤的数据才成为了紫题
洛谷 P5665 [CSP-S2019] 划分的更多相关文章
- 洛谷P4047 [JSOI2010]部落划分题解
洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...
- uoj#348/洛谷P4221 [WC2018]州区划分(FWT)
传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷 ...
- 【CSP-S 2019】【洛谷P5665】划分【单调队列dp】
前言 \(csp\)时发现自己做过类似这道题的题目 : P4954 [USACO09Open] Tower of Hay 干草塔 然后回忆了差不多\(15min\)才想出来... 然后就敲了\(88p ...
- 洛谷——P1025 数的划分
P1025 数的划分 题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有 ...
- 洛谷 P1025 数的划分 Label:dp
题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输 ...
- 洛谷 P1025 数的划分
题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输 ...
- [NOIP2001] 提高组 洛谷P1025 数的划分
题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输 ...
- 洛谷P1025 数的划分【dp】
将整数nn分成kk份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7n=7,k=3k=3,下面三种分法被认为是相同的. 1,1,51,1,5; 1,5,11,5,1; 5,1,15, ...
- nbuoj 2080 洛谷p1025 数的划分
链接:http://www.nbuoj.com/v8.83/Problems/Problem.php?pid=2820 链接:https://www.luogu.org/problem/P1025 题 ...
随机推荐
- [第四篇]——Windows Docker 安装之Spring Cloud直播商城 b2b2c电子商务技术总结
Windows Docker 安装 Docker 并非是一个通用的容器工具,它依赖于已存在并运行的 Linux 内核环境. Docker 实质上是在已经运行的 Linux 下制造了一个隔离的文件环境, ...
- 使用@EnableConfigurationProperties注册配置Bean时的命名规则
Spring和Spring Boot开发中,常使用@ConfigurationProperties注解某个类,使其实例接受一组具有相同前缀的配置项. 可以使用@Component或Java Confi ...
- CodeForce-810B Summer sell-off (结构体排序)
http://codeforces.com/problemset/problem/810/B 已知n天里,已知第i天的供货量和需求量,给定一个f,可以在n天之中选f天促销使得供货量翻倍. 问选择其中f ...
- 一起学习PHP中GD库的使用(三)
上篇文章我们已经学习了一个 GD 库的应用,那就是非常常用的制作验证码的功能.不过在现实的业务开发中,这种简单的验证码已经使用得不多了,大家会制作出更加复杂的验证码来使用.毕竟现在的各种外挂软件已经能 ...
- Java基础系列(30)- 命令行传参
命令行传参 有时候你希望运行一个程序的时候再传递给它消息.这就要靠传递命令行参数main()函数实现 package method; public class CommandLine { public ...
- Elasticsearch2.4.6版本 在linux 命令行 对数据的增删改操作
一._cluster系列:查询设置集群状态 1.设置集群状态 curl -XGET 10.68.120.167:9204/_cluster/health?pretty=true pretty=true ...
- python学习笔记(十一)-python程序目录工程化
在一个程序当中,一般都会包含文件夹:bin.conf.lib.data.logs,以及readme文件. 所写程序存放到各自的文件夹中,如何进行串联? 首先,通过导入文件导入模块方式,引用其他人写好的 ...
- layui 利用js原型方法来加载函数
//举例如下: !function (win) { var FUNC = function () { this.v = "3.3" }; //这里添加函数 FUNC.prototy ...
- 计算机python二级 第六套
第一模块 基本操作 1. random.seed(100) 随机种子 就是100 2.import random 3.https://www.runoob.com/python3/pytho ...
- BufferedInputStream与BufferedOutputStream的缓存底层实现
首先观察BufferedInputStream 的继承体系,可以看出他是继承自一个FilterInputStream,而这个又是继承自InputStream 我们在之前的装饰器模式就讲过,这个Buff ...