cf 11D A Simple Task(状压DP)
题意:
N个点构成的无向图,M条边描述这个无向图。
问这个无向图中共有多少个环。
(1 ≤ n ≤ 19, 0 ≤ m)
思路:
例子:
4 6
1 2
1 3
1 4
2 3
2 4
3 4
答案:7
画个图发现,直接暴力DFS有太多的重复计算。用DP。
枚举点数(状态),每个状态的起点、终点(起点可以不用枚举,因为反正是一个环,谁作为起点都一样)。
dp[S][i]:状态是S,i是终点 含义:从S中的第一个数s出发到达第i个点的方案数。如果s和i相加,总方案数ans+=dp[S][i]
dp[S][i]=sigma(dp[S'][i']) S'是去掉第i个点后的点集,i'属于S'且i'和i相连。
*结果除以2的原因:例:1-2-3-4-1 实际上和1-4-3-2-1是一样的。
代码:
int n,m;
char G[25][25];
int S[1<<19]; //全局状态
int cnS;
int P[25]; //全局指针
int cnP;
ll dp[(1<<19)+5][25];
ll ans; void finds(int nn,int fNum,int nowNum,int nowPos,int Ss){ //长度为nn,共要放fNum个,现在已放nowNum个,现在正在nowPos位置要进行第nowNum+1个放置的尝试
if(nowNum==fNum){
S[++cnS]=Ss;
return;
}
int t1=fNum-nowNum;
rep(i,nowPos,nn-t1+1){
int nSs=Ss+(1<<(i-1));
finds(nn,fNum,nowNum+1,i+1,nSs);
}
}
void calc(int nn,int S){ //总长度为nn,计算状态S哪些位置上为1,存在全局指针P【】中。
cnP=0;
rep(i,1,nn){
int t=(1<<(i-1));
if((S&t)>0){
P[++cnP]=i;
}
}
}
void init(){
cnS=0;
cnP=0;
finds(n,2,0,1,0);
mem(dp,0); rep(i,1,cnS){
int ss=S[i];
calc(n,ss);
rep(j,2,cnP){
if(G[P[1]][P[j]]==1){
dp[ss][P[j]]=1;
}
}
}
}
void solve(){
rep(i,3,n){ //状态由i个点构成
cnS=0;
cnP=0;
finds(n,i,0,1,0);
rep(tt,1,cnS){
int ss=S[tt];
calc(n,ss);
rep(j,2,cnP){
int pj=P[j]; //终点
int nss=ss-(1<<(pj-1)); //上一个状态
rep(k,2,cnP){ //枚举终点
if(k==j) continue;
if(G[pj][P[k]]==0) continue;
int pk=P[k];
dp[ss][pj]+=dp[nss][pk];
}
if(G[P[1]][pj]==1){
ans+=dp[ss][pj];
}
}
}
}
} int main(){
cin>>n>>m; mem(G,0);
while(m--){
int a,b;
scanf("%d%d",&a,&b);
G[a][b]=G[b][a]=1;
} if(n==1 || n==2){
puts("0");
}
else{
init();
ans=0;
solve();
printf("%I64d\n",ans/2);
} return 0;
}
cf 11D A Simple Task(状压DP)的更多相关文章
- CF11D A Simple Task 状压DP
传送门 \(N \leq 19\)-- 不难想到一个状压:设\(f_{i,j,k}\)表示开头为\(i\).结尾为\(j\).经过的点数二进制下为\(k\)的简单路总数,贡献答案就看\(i,j\)之间 ...
- CF 11D A Simple Task 题解
题面 这道题的数据范围一看就是dfs或状压啦~ 本文以状压的方式来讲解 f[i][j]表示目前的节点是i,已经经历过的节点的状态为j的简单环的个数: 具体的转移方程和细节请看代码: PS:(i& ...
- CF11D A Simple Task(状压DP)
\(solution:\) 思路大家应该都懂: 状压DP:\(f[i][j]\),其中 \(i\) 这一维是需要状压的,用来记录19个节点每一个是否已经走过(走过为 \(1\) ,没走为 \(0\) ...
- FZU - 2218 Simple String Problem(状压dp)
Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...
- FZU - 2218 Simple String Problem 状压dp
FZU - 2218Simple String Problem 题目大意:给一个长度为n含有k个不同字母的串,从中挑选出两个连续的子串,要求两个子串中含有不同的字符,问这样的两个子串长度乘积最大是多少 ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- fzu2188 状压dp
G - Simple String Problem Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
- HDU5816 Hearthstone(状压DP)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an online collec ...
- BZOJ-1087 互不侵犯King 状压DP+DFS预处理
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...
随机推荐
- React框架的基本使用和了解
React: React详解: 安装react 脚手架工具: npm install -g create-react-app create-react-app 项目名称 cnpm react-dom ...
- use关键字在PHP中的几种用法
在学习了和使用了这么多年的PHP之后,您知道use这个关键字在PHP中都有哪些用法吗?今天我们就来看一下它的三种常见用法. 1. 用于命名空间的别名引用 // 命名空间 include 'namesp ...
- python二级 第七套
第一部分 基本操作 第一题 1.format() 故名思意 就是格式化什么东西.所以你就是将你 需要格式化的东西 放在里面就行了 . format(s) 对s 有要求 就是 int(s) ...
- c++ 的学习 第3集-默认参数
1.默认参数的意思就是 予以形参默认值 2. C++允许函数设置默认参数,在调用时可以根据情况省略实参.规则如下: 默认参数只能按照右到左的顺序 如果函数同时有声明.实现,默认参数只能放在函数声 ...
- 鸿蒙内核源码分析(fork篇) | 一次调用,两次返回 | 百篇博客分析OpenHarmony源码 | v45.03
百篇博客系列篇.本篇为: v45.xx 鸿蒙内核源码分析(Fork篇) | 一次调用,两次返回 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内 ...
- P6122-[NEERC2016]Mole Tunnels【模拟费用流】
正题 题目链接:https://www.luogu.com.cn/problem/P6122 题目大意 给出\(n\)个点的一棵满二叉树,每个点有容量\(c_i\),\(m\)次从\(p_i\)处加一 ...
- Windows10通过WSL编译jdk12
Windows使用WSL编译OpenJDK 安装Ubuntu以及配置国内镜像 首选确保windows10已经安装了ubuntu 更换ubuntu20.04国内镜像,这里我选择的是阿里云镜像 sudo ...
- Spark MLib完整基础入门教程
Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...
- Dapr + .NET Core实战(十一)单机Dapr集群负载均衡
如何单机部署Dapr集群 第十篇讲过了K8S集群下如何使用Dapr运行程序,但是很多人一直在问如何单机下进行Dapr的负载,这节课我们来聊聊如何单机进行Dapr的负载. 首先要说的是单机下,通过 da ...
- java8的新特性之lambda表达式和方法引用
1.1. Lambda表达式 通过具体的实例去体会lambda表达式对于我们代码的简化,其实我们不去深究他的底层原理和背景,仅仅从用法上去理解,关注两方面: lambda表达式是Java8的一个语法糖 ...