LuoguB2133 我家的门牌号 题解
Update
- \(\texttt{2021.11.27}\) 修复了代码中的 \(10000\) 写成 \(n\) 的错误。
Content
一个家庭住在一个胡同里面,门牌号从 \(1\) 开始编号。其余门牌号的和减去这个家庭的门牌号的两倍恰好等于 \(n\),求这个家庭的门牌号和胡同的门牌号总数。
数据范围:\(n<10^5\)。
Solution
如果设胡同的门牌号总数为 \(m\),并设这个家庭的门牌号为 \(k\),则由题意可得(其中 \([i\neq k]\) 表示如果 \(i\neq k\),则这个值为 \(1\),否则为 \(0\)):
\]
如果我们把这个 \(\sum\limits_{i=1}^mi[i\neq k]\) 转化一下:
\]
所以:
\]
用等差数列求和公式将 \(\sum\limits_{i=1}^mi\) 转化为 \(\dfrac{m(m+1)}2\) 可得:
\]
因此,我们可以枚举 \(m\),然后是否满足以下两个条件:
- \(\dfrac{m(m+1)}2>n\)。
- \(3\mid(\dfrac{m(m+1)}2-n)\)(表示 \(3\) 能整除 \(\dfrac{m(m+1)}2-n\))。
可以发现,一旦满足了以上两个条件,\(m\) 此时的值依然很小,因此这样枚举是可以通过这道题的。
Code
#include <cstdio>
using namespace std;
int main() {
int n; scanf("%d", &n);
for(int i = 1; i <= 10000; ++i) {
int ans = i * (i + 1) / 2;
if(ans > n && !((ans - n) % 3)) {printf("%d %d", (ans - n) / 3, i); return 0;}
}
return 0;
}
LuoguB2133 我家的门牌号 题解的更多相关文章
- NOI上看到的几个小学奥数
:余数相同问题 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 已知三个正整数 a,b,c. 现有一个大于1的整数x,将其作为除数分别除a,b,c,得到的余数相同 ...
- OpenJudge解题经验交流
1.1编程基础之输入输出01:Hello, World! 02:输出第二个整数PS:a,b需用longint类型接收 03:对齐输出 04:输出保留3位小数的浮点数 05:输出保留12位小数的浮点数 ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
随机推荐
- spring boot的mybatis开启日志
logging: level: com: xxx: xxxx: xxxx: mapper: DEBUG logging.level.mapper对应的包名=DEBUG
- 超算云(GPU服务器)环境配置
最近在用并行超算云GPU服务器(中国国家网格12区)搭建毕设的环境,这里记录一下. 首先,超算云服务器的登录可以采用网页版.也可以采用客户端(超算云地址:https://cloud.paratera. ...
- 一些 tips
在本博客中,一般写题解的题都是我认为比较有价值的题,然而我还做过一些有一定价值,但并没有达到值得写一篇题解的程度,故将这些题目总结出的套路用一句话概括在这里: 当然如果看到我太久不更请在评论区里催我一 ...
- 洛谷 P4708 - 画画(Burnside 引理+组合数学)
洛谷题面传送门 神仙题 %%%%%%%%%%%%%%%%%%%% 题解搬运人来了 首先看到本质不同(无标号)的图计数咱们可以想到 Burnside 引理,具体来说,我们枚举一个排列 \(p\),并统计 ...
- canvas 基本介绍
# canvas 基本功能介绍 - canvas 能做什么 1. 绘制简单图形线条 2. 裁剪图片 - 开始绘制画布 新建html文档添加 canvas标签 ```html <div style ...
- 除了GO基因本体论,还有PO、TO、CO等各种Ontology?
目录 PO/TO CO 后记 我们最常用最熟悉的功能数据库之一:GO(gene onotology),基因本体论.其实是一套标准词汇术语,目的是从不同角度来描述某个基因的特点和功能,三大本体如生物学进 ...
- python-django-分页处理
每个模型都有一个管理器,Manager 通过分页可以先加载一部分的数据内容,然后避免大量的查询带来的等待时间 应用场景是,排行榜,前十条或者 for i in range(100): ...: ... ...
- JS简单入门
------------恢复内容开始------------ JavaScript,可以减少网页的规模,提高网页的浏览速度,丰富页面的表现和功能 HTML是进行基本结构的创建的,比如说表格和表单等, ...
- PHP-FPM运行状态的实时查看及监控详解
https://www.jb51.net/article/97640.htm https://blog.csdn.net/Dr_cokiy/article/details/105580758
- Python基础之数字类型内置方法
目录 1. 整型内置方法(int) 2. 浮点型内置方法 3. 常用操作 1. 整型内置方法(int) 用途:年龄,号码,等级等 定义: age = 18 常用操作 # 算数运算.比较运算 age = ...