转自:http://www.infoq.com/cn/articles/spark-core-rdd/ 感谢张逸老师的无私分享

RDD,全称为Resilient Distributed Datasets,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组丰富的操作来操作这些数据。在这些操作中,诸如map、flatMap、filter等转换操作实现了monad模式,很好地契合了Scala的集合操作。除此之外,RDD还提供了诸如join、groupBy、reduceByKey等更为方便的操作(注意,reduceByKey是action,而非transformation),以支持常见的数据运算。

通常来讲,针对数据处理有几种常见模型,包括:Iterative Algorithms,Relational Queries,MapReduce,Stream Processing。例如Hadoop MapReduce采用了MapReduces模型,Storm则采用了Stream Processing模型。RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。

RDD作为数据结构,本质上是一个只读的分区记录集合。一个RDD可以包含多个分区,每个分区就是一个dataset片段。RDD可以相互依赖。如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为narrow dependency;若多个Child RDD分区都可以依赖,则称之为wide dependency。不同的操作依据其特性,可能会产生不同的依赖。例如map操作会产生narrow dependency,而join操作则产生wide dependency。

Spark之所以将依赖分为narrow与wide,基于两点原因。首先,narrow dependencies可以支持在同一个cluster node上以管道形式执行多条命令,例如在执行了map后,紧接着执行filter。相反,wide dependencies需要所有的父分区都是可用的,可能还需要调用类似MapReduce之类的操作进行跨节点传递。其次,则是从失败恢复的角度考虑。narrow dependencies的失败恢复更有效,因为它只需要重新计算丢失的parent partition即可,而且可以并行地在不同节点进行重计算。而wide dependencies牵涉到RDD各级的多个Parent Partitions。下图说明了narrow dependencies与wide dependencies之间的区别:

本图来自Matei Zaharia撰写的论文An Architecture for Fast and General Data Processing on Large Clusters。图中,一个box代表一个RDD,一个带阴影的矩形框代表一个partition。

RDD如何保障数据处理效率?

RDD提供了两方面的特性persistence和patitioning,用户可以通过persist与patitionBy函数来控制RDD的这两个方面。RDD的分区特性与并行计算能力(RDD定义了parallerize函数),使得Spark可以更好地利用可伸缩的硬件资源。若将分区与持久化二者结合起来,就能更加高效地处理海量数据。例如:

input.map(parseArticle _).partitionBy(partitioner).cache()

partitionBy函数需要接受一个Partitioner对象,如:

val partitioner = new HashPartitioner(sc.defaultParallelism)

RDD本质上是一个内存数据集,在访问RDD时,指针只会指向与操作相关的部分。例如存在一个面向列的数据结构,其中一个实现为Int的数组,另一个实现为Float的数组。如果只需要访问Int字段,RDD的指针可以只访问Int数组,避免了对整个数据结构的扫描。RDD将操作分为两类:transformation与action。无论执行了多少次transformation操作,RDD都不会真正执行运算,只有当action操作被执行时,运算才会触发。而在RDD的内部实现机制中,底层接口则是基于迭代器的,从而使得数据访问变得更高效,也避免了大量中间结果对内存的消耗。在实现时,RDD针对transformation操作,都提供了对应的继承自RDD的类型,例如map操作会返回MappedRDD,而flatMap则返回FlatMappedRDD。当我们执行map或flatMap操作时,不过是将当前RDD对象传递给对应的RDD对象而已。例如:def map[U: ClassTag](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f))

这些继承自RDD的类都定义了compute函数。该函数会在action操作被调用时触发,在函数内部是通过迭代器进行对应的转换操作:

private[spark]
class MappedRDD[U: ClassTag, T: ClassTag](prev: RDD[T], f: T => U)
extends RDD[U](prev) {
override def getPartitions: Array[Partition] = firstParent[T].partitions
override def compute(split: Partition, context: TaskContext) =
firstParent[T].iterator(split, context).map(f)
}

RDD对容错的支持

支持容错通常采用两种方式:数据复制或日志记录。对于以数据为中心的系统而言,这两种方式都非常昂贵,因为它需要跨集群网络拷贝大量数据,毕竟带宽的数据远远低于内存。RDD天生是支持容错的。首先,它自身是一个不变的(immutable)数据集,其次,它能够记住构建它的操作图(Graph of Operation),因此当执行任务的Worker失败时,完全可以通过操作图获得之前执行的操作,进行重新计算。由于无需采用replication方式支持容错,很好地降低了跨网络的数据传输成本。不过,在某些场景下,Spark也需要利用记录日志的方式来支持容错。例如,在Spark Streaming中,针对数据进行update操作,或者调用Streaming提供的window操作时,就需要恢复执行过程的中间状态。此时,需要通过Spark提供的checkpoint机制,以支持操作能够从checkpoint得到恢复。针对RDD的wide dependency,最有效的容错方式同样还是采用checkpoint机制。不过,似乎Spark的最新版本仍然没有引入auto checkpointing机制。

总结

RDD是Spark的核心,也是整个Spark的架构基础。它的特性可以总结如下:

  • 它是不变的数据结构存储
  • 它是支持跨集群的分布式数据结构
  • 可以根据数据记录的key对结构进行分区
  • 提供了粗粒度的操作,且这些操作都支持分区
  • 它将数据存储在内存中,从而提供了低延迟性

Spark学习之RDD的理解的更多相关文章

  1. Spark学习之RDD编程(2)

    Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RD ...

  2. Spark学习之RDD编程总结

    Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...

  3. Spark学习笔记——RDD编程

    1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作 ...

  4. Spark学习之RDD

    RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合 ...

  5. spark 学习(二) RDD及共享变量

    声明:本文基于spark的programming guide,并融合自己的相关理解整理而成      Spark应用程序总是包括着一个driver program(驱动程序),它运行着用户的main方 ...

  6. spark学习(10)-RDD的介绍和常用算子

    RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他 ...

  7. Spark学习摘记 —— RDD转化操作API归纳

    本文参考 在阅读了<Spark快速大数据分析>动物书后,大概了解到了spark常用的api,不过书中并没有给予所有api具体的示例,而且现在spark的最新版本已经上升到了2.4.5,动物 ...

  8. spark学习(RDD案例实战)

    练习0(并行化创建RDD) 先启动spark-shell 通过并行化生成rdd scala> val rdd1 = sc.parallelize(List(63,45,89,23,144,777 ...

  9. Spark学习(2) RDD编程

    什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.弹性.里面的元素可并行计算的集合 RDD允 ...

随机推荐

  1. ubuntu 下 apache+tomcat整合_(mod-jk方法)[转]

    整合的平台是Centos5环境如下: apache源代码包: httpd-2.2.11.tar.gz  下载地址http://labs.xiaonei.com/apache-mirror/httpd/ ...

  2. [置顶] 学习VB.NET编程最基本的三个问题

    1.什么是对象和属性,他们之间的联系是? 对象:将对象看做一个实物或者事物的一种概念.比如说窗体和控件都是对象. 属性:属性阐明了与对象相关的或是控制对象行为的信息,例如,对象的名字.颜色.尺寸或者位 ...

  3. html系列教程--link mark meta

    <link> 标签:定义文档与外部资源的关系,常见的用途是链接样式表 demo: <link rel="stylesheet" type="text/c ...

  4. OCP prepare 20140703

    1. trim trim('aaa' from 'aaabbbccc') 这个是错误的.ora-30001: trim set should have only one character 2. in ...

  5. C趣味100道之58.拉丁方的一些想法。

    题目如上. 思路(未写) 完整代码如下: #include<iostream> #include<queue> #include<math.h> using nam ...

  6. zoj 3471Most Powerful

    题意:给n个atom(原子),每两个原子相碰会产生能量,不过每次碰撞会消失一个原子,而且不同原子碰撞,消失的原子不同,产生的能量也会不同,给出不同原子相碰撞产生的能量,求出能产生的最多能量. 状态DP ...

  7. leetcode First Missing Positive python

    class Solution(object): def firstMissingPositive(self, nums): """ :type nums: List[in ...

  8. spring4之依赖注入的三种方式

    1.Setter注入 <bean id="helloWorld" class="com.jdw.spring.beans.HelloWorld"> ...

  9. Scala单例对象、伴生对象实战详解

    1.Scala单例对象 Scala单例对象是十分重要的,没有像在Java一样,有静态类.静态成员.静态方法,但是Scala提供了object对象,这个object对象类似于Java的静态类,它的成员. ...

  10. Java 拾遗

    1.选择表达式中的类型转换 public class Test { public void static main(String args[]){ int i = 5; System.out.prin ...