Spark学习之RDD的理解
转自:http://www.infoq.com/cn/articles/spark-core-rdd/ 感谢张逸老师的无私分享
RDD,全称为Resilient Distributed Datasets,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组丰富的操作来操作这些数据。在这些操作中,诸如map、flatMap、filter等转换操作实现了monad模式,很好地契合了Scala的集合操作。除此之外,RDD还提供了诸如join、groupBy、reduceByKey等更为方便的操作(注意,reduceByKey是action,而非transformation),以支持常见的数据运算。
通常来讲,针对数据处理有几种常见模型,包括:Iterative Algorithms,Relational Queries,MapReduce,Stream Processing。例如Hadoop MapReduce采用了MapReduces模型,Storm则采用了Stream Processing模型。RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。
RDD作为数据结构,本质上是一个只读的分区记录集合。一个RDD可以包含多个分区,每个分区就是一个dataset片段。RDD可以相互依赖。如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为narrow dependency;若多个Child RDD分区都可以依赖,则称之为wide dependency。不同的操作依据其特性,可能会产生不同的依赖。例如map操作会产生narrow dependency,而join操作则产生wide dependency。
Spark之所以将依赖分为narrow与wide,基于两点原因。首先,narrow dependencies可以支持在同一个cluster node上以管道形式执行多条命令,例如在执行了map后,紧接着执行filter。相反,wide dependencies需要所有的父分区都是可用的,可能还需要调用类似MapReduce之类的操作进行跨节点传递。其次,则是从失败恢复的角度考虑。narrow dependencies的失败恢复更有效,因为它只需要重新计算丢失的parent partition即可,而且可以并行地在不同节点进行重计算。而wide dependencies牵涉到RDD各级的多个Parent Partitions。下图说明了narrow dependencies与wide dependencies之间的区别:

本图来自Matei Zaharia撰写的论文An Architecture for Fast and General Data Processing on Large Clusters。图中,一个box代表一个RDD,一个带阴影的矩形框代表一个partition。
RDD如何保障数据处理效率?
RDD提供了两方面的特性persistence和patitioning,用户可以通过persist与patitionBy函数来控制RDD的这两个方面。RDD的分区特性与并行计算能力(RDD定义了parallerize函数),使得Spark可以更好地利用可伸缩的硬件资源。若将分区与持久化二者结合起来,就能更加高效地处理海量数据。例如:
input.map(parseArticle _).partitionBy(partitioner).cache()
partitionBy函数需要接受一个Partitioner对象,如:
val partitioner = new HashPartitioner(sc.defaultParallelism)
RDD本质上是一个内存数据集,在访问RDD时,指针只会指向与操作相关的部分。例如存在一个面向列的数据结构,其中一个实现为Int的数组,另一个实现为Float的数组。如果只需要访问Int字段,RDD的指针可以只访问Int数组,避免了对整个数据结构的扫描。RDD将操作分为两类:transformation与action。无论执行了多少次transformation操作,RDD都不会真正执行运算,只有当action操作被执行时,运算才会触发。而在RDD的内部实现机制中,底层接口则是基于迭代器的,从而使得数据访问变得更高效,也避免了大量中间结果对内存的消耗。在实现时,RDD针对transformation操作,都提供了对应的继承自RDD的类型,例如map操作会返回MappedRDD,而flatMap则返回FlatMappedRDD。当我们执行map或flatMap操作时,不过是将当前RDD对象传递给对应的RDD对象而已。例如:def map[U: ClassTag](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f))
这些继承自RDD的类都定义了compute函数。该函数会在action操作被调用时触发,在函数内部是通过迭代器进行对应的转换操作:
private[spark]
class MappedRDD[U: ClassTag, T: ClassTag](prev: RDD[T], f: T => U)
extends RDD[U](prev) {
override def getPartitions: Array[Partition] = firstParent[T].partitions
override def compute(split: Partition, context: TaskContext) =
firstParent[T].iterator(split, context).map(f)
}
RDD对容错的支持
支持容错通常采用两种方式:数据复制或日志记录。对于以数据为中心的系统而言,这两种方式都非常昂贵,因为它需要跨集群网络拷贝大量数据,毕竟带宽的数据远远低于内存。RDD天生是支持容错的。首先,它自身是一个不变的(immutable)数据集,其次,它能够记住构建它的操作图(Graph of Operation),因此当执行任务的Worker失败时,完全可以通过操作图获得之前执行的操作,进行重新计算。由于无需采用replication方式支持容错,很好地降低了跨网络的数据传输成本。不过,在某些场景下,Spark也需要利用记录日志的方式来支持容错。例如,在Spark Streaming中,针对数据进行update操作,或者调用Streaming提供的window操作时,就需要恢复执行过程的中间状态。此时,需要通过Spark提供的checkpoint机制,以支持操作能够从checkpoint得到恢复。针对RDD的wide dependency,最有效的容错方式同样还是采用checkpoint机制。不过,似乎Spark的最新版本仍然没有引入auto checkpointing机制。
总结
RDD是Spark的核心,也是整个Spark的架构基础。它的特性可以总结如下:
- 它是不变的数据结构存储
- 它是支持跨集群的分布式数据结构
- 可以根据数据记录的key对结构进行分区
- 提供了粗粒度的操作,且这些操作都支持分区
- 它将数据存储在内存中,从而提供了低延迟性
Spark学习之RDD的理解的更多相关文章
- Spark学习之RDD编程(2)
Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RD ...
- Spark学习之RDD编程总结
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...
- Spark学习笔记——RDD编程
1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作 ...
- Spark学习之RDD
RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合 ...
- spark 学习(二) RDD及共享变量
声明:本文基于spark的programming guide,并融合自己的相关理解整理而成 Spark应用程序总是包括着一个driver program(驱动程序),它运行着用户的main方 ...
- spark学习(10)-RDD的介绍和常用算子
RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他 ...
- Spark学习摘记 —— RDD转化操作API归纳
本文参考 在阅读了<Spark快速大数据分析>动物书后,大概了解到了spark常用的api,不过书中并没有给予所有api具体的示例,而且现在spark的最新版本已经上升到了2.4.5,动物 ...
- spark学习(RDD案例实战)
练习0(并行化创建RDD) 先启动spark-shell 通过并行化生成rdd scala> val rdd1 = sc.parallelize(List(63,45,89,23,144,777 ...
- Spark学习(2) RDD编程
什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.弹性.里面的元素可并行计算的集合 RDD允 ...
随机推荐
- UBUNTU 下如何升级 gcc, g++
正如大家所知道的GCC并不支持"make uninstall". 一种推荐安装方式就是把GCC 安装在你自己指定的一个路径,当你不须要某个GCC版本号的时候你仅仅须要移除相应版本号 ...
- sctf pwn300
拿到程序后,拉入IDA,大概看了一番后,尝试运行,进一步了解程序的功能. 发现NX enabled,No PIE. 一号是一个猜数字的游戏,二号是一个留言本,三号是打印出留言的内容,四号是退出. 观察 ...
- SQL整理4
--====================简单增删改===========--查看学生表的全部数据select * from studio --插入一个新的学生信息insert into stu ...
- SqlServer2008 数据库同步的两种方式 (发布、订阅)
尊重原著作:本文转载自http://www.cnblogs.com/tyb1222/archive/2011/05/31/2064944.html 上篇中说了通过SQL JOB的方式对数据库的同步,这 ...
- 发布前,Bat Script备份服务器的Website
由于远程访问服务器,操作滞后验证,备份不方便.我试了两种方式,VBScript和利用7zip的脚本自动备份网站.下面有简单的说明供参考. 1. VBScript, 使用VB脚本打包,不稳定,在服务器上 ...
- 《转载》深入理解 CSS 中的行高与基线
这篇文章总结的很好,故转载收藏. 1.基本概念 1. 基线.底线.顶线.中线 注意:基线(base line)并不是汉字文字的下端沿,而是英文字母“x”的下端沿. 2. 内容区 内容区是指底线和顶线 ...
- javascript限制input只允许输入数字
在做数据提交的表单时,经常要对input输入内容的类型进行限制,譬如javascript限制input只允许输入数字,最好的方法当然是使用javascript,因为它不用与服务器交互,大大减轻了服务器 ...
- WEBGL 2D游戏引擎研发系列 第一章 <新的开始>
WEBGL 2D游戏引擎研发系列 第一章 <新的开始> ~\(≥▽≤)/~HTML5游戏开发者社区(群号:326492427) 转载请注明出处:http://html5gamedev.or ...
- navigator.geolocation例子
navigator.geolocation例子 <html> <head> <script type="text/javascript"> fu ...
- ListView的简单使用和性能优化
起源:ListView是Android开发中使用最广泛的一种控件,它以垂直列表的形式显示所有列表项. 创建ListView有两种方式: ☆ 直接使用ListView进行创建. ☆让Activity继承 ...