Pagodas(等差数列)
PagodasTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem Description
n pagodas were standing erect in Hong Jue Si between the Niushou Mountain and the Yuntai Mountain, labelled from 1 to n. However, only two of them (labelled aand b, where 1≤a≠b≤n) withstood the test of time.
Two monks, Yuwgna and Iaka, decide to make glories great again. They take turns to build pagodas and Yuwgna takes first. For each turn, one can rebuild a new pagodas labelled i (i∉{a,b} and 1≤i≤n) if there exist two pagodas standing erect, labelled j and k respectively, such that i=j+k or i=j−k. Each pagoda can not be rebuilt twice. This is a game for them. The monk who can not rebuild a new pagoda will lose the game. Input
The first line contains an integer t (1≤t≤500) which is the number of test cases.
For each test case, the first line provides the positive integer n (2≤n≤20000) and two different integers a and b. Output
For each test case, output the winner (``Yuwgna" or ``Iaka"). Both of them will make the best possible decision each time.
Sample Input
16 2 1 2 3 1 3 67 1 2 100 1 2 8 6 8 9 6 8 10 6 8 11 6 8 12 6 8 13 6 8 14 6 8 15 6 8 16 6 8 1314 6 8 1994 1 13 1994 7 12
Sample Output
Case #1: Iaka Case #2: Yuwgna Case #3: Yuwgna Case #4: Iaka Case #5: Iaka Case #6: Iaka Case #7: Yuwgna Case #8: Yuwgna Case #9: Iaka Case #10: Iaka Case #11: Yuwgna Case #12: Yuwgna Case #13: Iaka Case #14: Yuwgna Case #15: Iaka Case #16: Iaka
|
题意:给定n个位置(1 — n),每个位置只能建造一个塔。现在位置a和b已经建好了塔,已知每次可以新建塔的前提——能够找到两个塔j和k使得 i = j-k || i = j+k。
现在给出一个博弈局面,当某个人不能再建造塔时为输。问你谁能赢。
思路:当且仅当 a和b处于某个等差数列(差值不为1)时,才无法使得所有位置都建上塔。相反,则n个位置均可建塔。等差数列的差值 d = gcd(a, b),求出可以建塔的个数就可以了。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int gcd(int x,int y){
return !y?x:gcd(y,x%y);
}
int main(){
int T,flot=;
int n,a,b;
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&a,&b);
int t=gcd(a,b);
//printf("%d\n",t);
int temp=n/t-;
if(temp&)printf("Case #%d: Yuwgna\n",++flot);
else printf("Case #%d: Iaka\n",++flot);
}
return ;
}
Pagodas(等差数列)的更多相关文章
- Pagodas 等差数列
nn pagodas were standing erect in Hong Jue Si between the Niushou Mountain and the Yuntai Mountain, ...
- HDU 5512 - Pagodas - [gcd解决博弈]
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5512 Time Limit: 2000/1000 MS (Java/Others) Mem ...
- 等差数列(bzoj 3357)
Description 约翰发现奶牛经常排成等差数列的号码.他看到五头牛排成这样的序号:"1,4,3,5,7" 很容易看出"1,3,5,7"是等差数列. ...
- 3357: [Usaco2004]等差数列
3357: [Usaco2004]等差数列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 321 Solved: 153[Submit][Statu ...
- Find Missing Term in Arithmetic Progression 等差数列缺失项
查找等差数列中的缺失项. e.g.Input: arr[] = {2, 4, 8, 10, 12, 14} Output: 6 Input: arr[] = {1, 6, 11, 16, 21, 31 ...
- n个整数中,找出尽可能多的数使他们组成一个等差数列,求最长等差数列的长度
例子: 3,8,4,5,6,2 返回值应该为 :5 这是昨天做的一道优酷土豆的编程题,和leetcode中的128/ Longest Consecutive Sequence 有点 ...
- 洛谷 P1147 连续自然数和 Label:等差数列
题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个 ...
- TYVJ P1091 等差数列 Label:dp
背景 广东汕头聿怀初中 Train#3 Problem 3 描述 等差数列的定义是一个数列S,它满足了(S[i]-S[i-1]) = d (i>1).显然的一个单独的数字或者两个数字也可以形成一 ...
- 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions
P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...
随机推荐
- web 开发规范
好久没整理博文了 啰嗦两句 转载至新浪...... 于在未开启cleartype的情况下,一些中文字体在非偶数字号下的显示效果欠佳,所以一般建议使用12.14.16.18.22px等偶数字号.也就 ...
- python 冒泡和快排,不多说【无聊】
#-*-coding:utf8-*- import random a=[] b=[] def init_array(): for i in range(10000): v = random.randi ...
- php多图合并
function mergerImg($imgs) { list($max_width, $max_height) = getimagesize($imgs['dst']); $dests = ima ...
- ssma for oracle
SQL Server Migration Assistant (SSMA) for Oracle lets you quickly convert Oracle database schemas to ...
- Python一些字符串判断和转换
设s是字符串: s.isalnum() 判断所有字符都是数字或者字母 s.isalpha() 判断所有字符都是字母 s.isdigit() 判断所有字符都是数字 s.islower() ...
- squid客户端命令
常用squid客户端命令: squidclient -p mgr:info #取得squid运行状态信息: squidclient -p mgr:mem #取得squid内存使用情况: squidcl ...
- 此windows副本不是正版解决方法
老爸的win7今天黑屏 右下角出现 Windows7 内部版本7601 此windows副本不是正版 网上零散地找到了解决办法 写博汇总一下 我的情况是 电脑属性中的windows激活显示: 状态不可 ...
- DOM Traversal Example | Documentation | Qt Project
DOM Traversal Example | Documentation | Qt Project DOM Traversal Example
- webservice的讲解
Web Service实践之——开始XFire 一.Axis与XFire的比较 XFire是与Axis2 并列的新一代WebService平台.之所以并称为新一代,因为它: 1.支持一系列Web Se ...
- windows XP 安装pip
1.首先安装Python 2.添加环境变量 我的是 path = C:\Python27 3.下载setuptools 这里可参考这篇博文,附带资源的:http://blog.csdn.net/sud ...