Pagodas(等差数列)
PagodasTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem Description
n pagodas were standing erect in Hong Jue Si between the Niushou Mountain and the Yuntai Mountain, labelled from 1 to n. However, only two of them (labelled aand b, where 1≤a≠b≤n) withstood the test of time.
Two monks, Yuwgna and Iaka, decide to make glories great again. They take turns to build pagodas and Yuwgna takes first. For each turn, one can rebuild a new pagodas labelled i (i∉{a,b} and 1≤i≤n) if there exist two pagodas standing erect, labelled j and k respectively, such that i=j+k or i=j−k. Each pagoda can not be rebuilt twice. This is a game for them. The monk who can not rebuild a new pagoda will lose the game. Input
The first line contains an integer t (1≤t≤500) which is the number of test cases.
For each test case, the first line provides the positive integer n (2≤n≤20000) and two different integers a and b. Output
For each test case, output the winner (``Yuwgna" or ``Iaka"). Both of them will make the best possible decision each time.
Sample Input
16 2 1 2 3 1 3 67 1 2 100 1 2 8 6 8 9 6 8 10 6 8 11 6 8 12 6 8 13 6 8 14 6 8 15 6 8 16 6 8 1314 6 8 1994 1 13 1994 7 12
Sample Output
Case #1: Iaka Case #2: Yuwgna Case #3: Yuwgna Case #4: Iaka Case #5: Iaka Case #6: Iaka Case #7: Yuwgna Case #8: Yuwgna Case #9: Iaka Case #10: Iaka Case #11: Yuwgna Case #12: Yuwgna Case #13: Iaka Case #14: Yuwgna Case #15: Iaka Case #16: Iaka
|
题意:给定n个位置(1 — n),每个位置只能建造一个塔。现在位置a和b已经建好了塔,已知每次可以新建塔的前提——能够找到两个塔j和k使得 i = j-k || i = j+k。
现在给出一个博弈局面,当某个人不能再建造塔时为输。问你谁能赢。
思路:当且仅当 a和b处于某个等差数列(差值不为1)时,才无法使得所有位置都建上塔。相反,则n个位置均可建塔。等差数列的差值 d = gcd(a, b),求出可以建塔的个数就可以了。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int gcd(int x,int y){
return !y?x:gcd(y,x%y);
}
int main(){
int T,flot=;
int n,a,b;
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&a,&b);
int t=gcd(a,b);
//printf("%d\n",t);
int temp=n/t-;
if(temp&)printf("Case #%d: Yuwgna\n",++flot);
else printf("Case #%d: Iaka\n",++flot);
}
return ;
}
Pagodas(等差数列)的更多相关文章
- Pagodas 等差数列
nn pagodas were standing erect in Hong Jue Si between the Niushou Mountain and the Yuntai Mountain, ...
- HDU 5512 - Pagodas - [gcd解决博弈]
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5512 Time Limit: 2000/1000 MS (Java/Others) Mem ...
- 等差数列(bzoj 3357)
Description 约翰发现奶牛经常排成等差数列的号码.他看到五头牛排成这样的序号:"1,4,3,5,7" 很容易看出"1,3,5,7"是等差数列. ...
- 3357: [Usaco2004]等差数列
3357: [Usaco2004]等差数列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 321 Solved: 153[Submit][Statu ...
- Find Missing Term in Arithmetic Progression 等差数列缺失项
查找等差数列中的缺失项. e.g.Input: arr[] = {2, 4, 8, 10, 12, 14} Output: 6 Input: arr[] = {1, 6, 11, 16, 21, 31 ...
- n个整数中,找出尽可能多的数使他们组成一个等差数列,求最长等差数列的长度
例子: 3,8,4,5,6,2 返回值应该为 :5 这是昨天做的一道优酷土豆的编程题,和leetcode中的128/ Longest Consecutive Sequence 有点 ...
- 洛谷 P1147 连续自然数和 Label:等差数列
题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个 ...
- TYVJ P1091 等差数列 Label:dp
背景 广东汕头聿怀初中 Train#3 Problem 3 描述 等差数列的定义是一个数列S,它满足了(S[i]-S[i-1]) = d (i>1).显然的一个单独的数字或者两个数字也可以形成一 ...
- 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions
P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...
随机推荐
- nbtstat 查询IP地址对应的计算机名称
使用命令nbtstat -a ipaddress即可,例如:nbtstat -a 192.168.1.2.
- Javascript对象的声明
JavaScript 对象 对象由花括号分隔.在括号内部,对象的属性以名称和值对的形式 (name : value) 来定义.属性由逗号分隔: var person={firstname:" ...
- ios即时通讯客户端开发之-mac上基于XMPP的聊天客户端开发环境搭建
1.搭建服务器 - 安装顺序 - (mysql->openfire->spark) 数据库:mysql 服务器管理工具: openfire 测试工具: spark mysql 安装 h ...
- zoj 2165
很简单的DFS搜索水题,递归理解深了很easy的!打了一遍就ac了 #include<stdio.h> ][]; ,n,m; void DFS(int x,int y) { ; ;i< ...
- Studious Student Problem Analysis
(http://leetcode.com/2011/01/studious-student-problem-analysis.html) You've been given a list of wor ...
- python文件操作精髓
总是记不住API.昨晚写的时候用到了这些,但是没记住,于是就索性整理一下吧: python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Pyth ...
- shell学习-读取输入
功能:读取输入,打印:如果长度小于MINLEN,那么输出空格. #!/bin/bash # paragraph-space.sh # Insert a blank line between parag ...
- Android自定义控件(36篇)
http://blog.csdn.net/lmj623565791/article/details/44278417 http://download.csdn.net/user/lmj62356579 ...
- Linux安装make无法使用
1.apt-get update 2.apt-get install g++ 3.apt-get install pentium-builder 4.apt-get install build-ess ...
- 分布式配置管理平台 Disconf
Distributed Configuration Management Platform(分布式配置管理平台) 专注于各种 分布式系统配置管理 的通用组件/通用平台, 提供统一的配置管理服务. 包括 ...