《Programming Massively Parallel Processors》Chapter5 习题解答
自己做的部分习题解答,因为时间关系,有些马虎,也不全面,欢迎探讨或指出错误
5.1 Consider the matrixaddition in Exercise 3.1. Can one use shared memory to reduce theglobal memory bandwidth consumption?
Hint: analyze the elementsaccessed by each thread and see if there is any commonality betweenthreads.
Answer:I think there is no need to use shared memory in Exercise3.1, becauseall threads only use their variables once and no variables need to beshared between threads.
5.2 Draw the equivalent ofFigure 5.6 for a 8*8 matrix multiplication with 2*2 tiling and 4*4tiling. Verify that the reduction in global memory bandwidth isindeed proportional to the dimension size of the tiles.
Answer:
1.A 8*8matrix multiplication with 2*2tiling
Block0,0
|
Phase1 |
Phase2 |
|||||||
|
thread0,0 |
M0,0 ↓ Mds0,0 |
N0,0 ↓ Nds0,0 |
Pvalue0,0+= Mds0,0*Nds0,0 +Mds0,1*Nds1,0 |
M0,2 ↓ Mds0,0 |
N2,0 ↓ Nds0,0 |
Pvalue0,0+= Mds0,0*Nds0,0 +Mds0,1*Nds1,0 |
||
|
thread0,1 |
M0,1 ↓ Mds0,1 |
N0,1 ↓ Nds0,1 |
Pvalue0,1+= Mds0,0*Nds0,1 +Mds0,1*Nds1,1 |
M0,3 ↓ Mds0,1 |
N2,1 ↓ Nds0,1 |
Pvalue0,1+= Mds0,0*Nds0,1 +Mds0,1*Nds1,1 |
||
|
thread1,0 |
M1,0 ↓ Mds1,0 |
N1,0 ↓ Nds1,0 |
Pvalue1,0+= Mds1,0*Nds0,0 +Mds1,1*Nds1,0 |
M1,2 ↓ Mds1,0 |
N3,0 ↓ Nds1,0 |
Pvalue1,0+= Mds1,0*Nds0,0 +Mds1,1*Nds1,0 |
||
|
thread1,1 |
M1,1 ↓ Mds1,1 |
N1,1 ↓ Nds1,1 |
Pvalue1,1+= Mds1,0*Nds0,1 +Mds1,1*Nds1,1 |
M1,3 ↓ Mds1,1 |
N3,1 ↓ Nds1,1 |
Pvalue1,1+= Mds1,0*Nds0,1 +Mds1,1*Nds1,1 |
||
|
Phase3 |
Phase4 |
|||||||
|
thread0,0 |
M0,4 ↓ Mds0,0 |
N4,0 ↓ Nds0,0 |
Pvalue0,0+= Mds0,0*Nds0,0 +Mds0,1*Nds1,0 |
M0,6 ↓ Mds0,0 |
N6,0 ↓ Nds0,0 |
Pvalue0,0+= Mds0,0*Nds0,0 +Mds0,1*Nds1,0 |
||
|
thread0,1 |
M0,5 ↓ Mds0,1 |
N4,1 ↓ Nds0,1 |
Pvalue0,1+= Mds0,0*Nds0,1 +Mds0,1*Nds1,1 |
M0,7 ↓ Mds0,1 |
N6,1 ↓ Nds0,1 |
Pvalue0,1+= Mds0,0*Nds0,1 +Mds0,1*Nds1,1 |
||
|
thread1,0 |
M1,4 ↓ Mds1,0 |
N5,0 ↓ Nds1,0 |
Pvalue1,1+= Mds1,0*Nds0,1 +Mds1,1*Nds1,1 |
M1,6 ↓ Mds1,0 |
N7,0 ↓ Nds1,0 |
Pvalue1,1+= Mds1,0*Nds0,1 +Mds1,1*Nds1,1 |
||
|
thread1,1 |
M1,5 ↓ Mds1,1 |
N5,1 ↓ Nds1,1 |
Pvalue1,1+= Mds1,0*Nds0,1 +Mds1,1*Nds1,1 |
M1,7 ↓ Mds1,1 |
N7,1 ↓ Nds1,1 |
Pvalue1,1+= Mds1,0*Nds0,1 +Mds1,1*Nds1,1 |
||
2.A 8*8matrix multiplication with 4*4tiling
Block0,0
|
Phase1 |
Phase2 |
|||||
|
thread0,0 |
M0,0 ↓ Mds0,0 |
N0,0 ↓ Nds0,0 |
Pvalue0,0+= Mds0,0*Nds0,0 +Mds0,1*Nds1,0 +Mds0,2*Nds2,0 +Mds0,3*Nds3,0 |
M0,4 ↓ Mds0,0 |
N4,0 ↓ Nds0,0 |
Pvalue0,0+= Mds0,0*Nds0,0 +Mds0,1*Nds1,0 +Mds0,2*Nds2,0 +Mds0,3*Nds3,0 |
|
thread0,1 |
M0,1 ↓ Mds0,1 |
N0,1 ↓ Nds0,1 |
Pvalue0,1+= Mds0,0*Nds0,1 +Mds0,1*Nds1,1 +Mds0,2*Nds2,1 +Mds0,3*Nds3,1 |
M0,5 ↓ Mds0,1 |
N4,1 ↓ Nds0,1 |
Pvalue0,1+= Mds0,0*Nds0,1 +Mds0,1*Nds1,1 +Mds0,2*Nds2,1 +Mds0,3*Nds3,1 |
|
thread0,2 |
M0,2 ↓ Mds0,2 |
N0,2 ↓ Nds0,2 |
Pvalue0,2+= Mds0,0*Nds0,2 +Mds0,1*Nds1,2 +Mds0,2*Nds2,2 +Mds0,3*Nds3,2 |
M0,6 ↓ Mds0,2 |
N4,2 ↓ Nds0,2 |
Pvalue0,2+= Mds0,0*Nds0,2 +Mds0,1*Nds1,2 +Mds0,2*Nds2,2 +Mds0,3*Nds3,2 |
|
thread0,3 |
M0,3 ↓ Mds0,3 |
N0,3 ↓ Nds0,3 |
Pvalue0,3+= Mds0,0*Nds0,3 +Mds0,1*Nds1,3 +Mds0,2*Nds2,3 +Mds0,3*Nds3,3 |
M0,7 ↓ Mds0,3 |
N4,3 ↓ Nds0,3 |
Pvalue0,3+= Mds0,0*Nds0,3 +Mds0,1*Nds1,3 +Mds0,2*Nds2,3 +Mds0,3*Nds3,3 |
|
Thread1.x-thread3.xellipsis |
||||||
As shown in the tables,the reduction in global memory bandwidth is indeed proportional tothe dimension size of the tiles, cause the if the tile is bigger, thethread used is proportional bigger, the phase of read data fromglobal memory is proportional smaller, so the reduction in globalmemory bandwidth is proportional to the dimension size of the tiles.
5.3 What type of incorrectexecution behavior can happen if one forgot to use syncthreads() inthe kernel of Figure 5.12?
Answer: The barrier__syncthreads() in line 11 ensures that all threads have finishedloading the tiles of d_M and d_N into Mds and Nds before any of themcan move forward. The barrier __syncthread() in line 14 ensures thatall threads have finished using the d_M and d_N elements in theshared memory before any of them move on to the next iteration andload the elements in the next tiles. Without synthreads() in thekernel, the threads would load the elements too early and corrupt theinput values for other threads.
5.4 Assuming capacity was notan issue for register or shared memory, give one case that it wouldbe valuable to use shared memory instead of registers to hold valuesfetched from global memory?
Explain your answer?
Answer: Without concerningthe capacity of register or shared memory. The biggest differencebetween them is that a register is made for a single thread, butshared memory can be shared by all threads in one block.
So the matrixmultiplication maybe a good example because the data read by onethread may be useful to other threads.
5.5 For our tiledmatrix-matrix multiplication kernel, if we use a 32*32 tile, what isthe reduction of memory bandwidth usage for input matrices M andN?
a. 1/8 of the original usage
b. 1/16 of the originalusage
c. 1/32 of the originalusage
d. 1/64 of the originalusage
Answer: c
5.6 Assume that a kernel islaunched with 1000 tread blocks each of which has 512 threads. If avariable is declared as a local variable in the kernel, how manyversions of the variable will be created through the life time of theexecution of the kernel?
a.1
b.1000
c.512
d.512000
Answer: d
5.7 In the previous question,if a variable is declared as a shared memory variable, how manyversions of the variable will be created through the life time of theexecution of the kernel?
a.1
b.1000
c.512
d.51200
Answer: b
5.9 Consider performing amatrix multiplication of two input matrices with dimensions N*N. Howmany times is each element in the input matrices request form globalmemory when:
a. There is no tiling?
b. Tiles of size T*T areused?
Answer: a. N
b. N/T
《Programming Massively Parallel Processors》Chapter5 习题解答的更多相关文章
- Coursera公开课Functional Programming Principles in Scala习题解答:Week 2
引言 OK.时间非常快又过去了一周.第一周有五一假期所以感觉时间绰绰有余,这周中间没有假期仅仅能靠晚上加周末的时间来消化,事实上还是有点紧张呢! 后来发现每堂课的视频还有相应的课件(Slide).字幕 ...
- Massively parallel supercomputer
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...
- (搬运)《算法导论》习题解答 Chapter 22.1-1(入度和出度)
(搬运)<算法导论>习题解答 Chapter 22.1-1(入度和出度) 思路:遍历邻接列表即可; 伪代码: for u 属于 Vertex for v属于 Adj[u] outdegre ...
- DirectX 11游戏编程学习笔记之8: 第6章Drawing in Direct3D(在Direct3D中绘制)(习题解答)
本文由哈利_蜘蛛侠原创,转载请注明出处.有问题欢迎联系2024958085@qq.com 注:我给的电子版是700多页,而实体书是800多页,所以我在提到相关概念的时候 ...
- 现代控制理论习题解答与Matlab程序示例
现代控制理论习题解答与Matlab程序示例 现代控制理论 第三版 课后习题参考解答: http://download.csdn.net/detail/zhangrelay/9544934 下面给出部分 ...
- 【AI】Exponential Stochastic Cellular Automata for Massively Parallel Inference - 大规模并行推理的指数随机元胞自动机
[论文标题]Exponential Stochastic Cellular Automata for Massively Parallel Inference (19th-ICAIS,PMLR ...
- P4: Programming Protocol-Independent Packet Processors
P4: Programming Protocol-Independent Packet Processors 摘要 P4是一门高级语言,用于编程与协议无关的数据包处理器.P4与SDN控制协议相关联,类 ...
- 機器學習基石(Machine Learning Foundations) 机器学习基石 作业三 课后习题解答
今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三的习题解答.笔者在做这些题目时遇到非常多困难,当我在网上寻找答案时却找不到,而林 ...
- 《C++编程思想》第四章 初始化与清除(原书代码+习题+解答)
相关代码: 1. #include <stdio.h> class tree { int height; public: tree(int initialHeight); ~tree(); ...
随机推荐
- 织梦DEDECMS {dede:field name='position'/}标签增加其它属性的
在默认情况下,织梦(DedeCms)系统当前位置的调用标签为: {dede:field name='position'/} 在这种默认的情况下,生成后的代码大致为如下格式: 主页 > 应用软件 ...
- solr官方文档翻译系列之schema.xml配置介绍
常见的元素 <field name="weight" type="float" indexed="true" stored=" ...
- FTP链接mac
mac下一般用smb服务来进行远程文件访问,但要用FTP的话,高版本的mac os默认关掉了,可以用如下命令打开: sudo -s launchctl load -w /System/Library/ ...
- java IO 实例分析
初学java,一直搞不懂java里面的io关系,在网上找了很多大多都是给个结构图草草描述也看的不是很懂.而且没有结合到java7 的最新技术,所以自己来整理一下,有错的话请指正,也希望大家提出宝贵意见 ...
- 解决百度Ueditor编辑器表格不显示边框问题
一.主要内容 CMS使用百度Ueditor编辑器中的表格功能,在编辑模式下可以正常显示边框,而文章发布之后表格不能显示边框.本博文经过查阅相关资料,最终解决了该问题. 二.使用平台 1. dedecm ...
- 使用 phpMyAdmin无法登录mysql的问题
今天使用使用phpmyadmin时出现了以下错误: (1)第一次时: 当配置文件config.inc.php里的配置项是: $cfg['Servers'][$i]['host'] = 'localho ...
- testng,soket write error错误
网上解决手段: testng 工程报错java.net.SocketException SocketException: Software caused connection abort · Iss ...
- Update主循环、状态机的实现
从写一段程序,到写一个app,写一个游戏,到底其中有什么不同呢?一段程序的执行时间很短,一个应用的执行时间很长,仅此而已. 游戏中存在一个帧的概念. 这个概念大家都知道,类比的话,它就是电影胶卷的 ...
- 四句话表明JSON格式定义
(1):并列的数据之间使用逗号(",")分割: (2):键值对的映射用冒号(":")表示: (3):并列数据的集合(数组)用方括号("[]" ...
- Android百度地图默认位置中心点设置
//初始化地图 MapView mMapView = (MapView) findViewById(R.id.map); BaiduMap mBaidumap = mMapView.getMap ...