Teach Yourself Scheme in Fixnum Days 6 recursion递归
A procedure body can contain calls to other procedures, not least itself:
(define factorial
(lambda (n)
(if (= n 0) 1
(* n (factorial (- n 1))))))
This recursive procedure calculates the factorial of a number. If the number is 0, the answer is 1. For any other number n, the procedure uses itself to calculate the factorial of n ‑ 1, multiplies that subresult by n, and returns the product.
Mutually recursive procedures are also possible. The following predicates for evenness and oddness use each other:
相互递归:
(define is-even?
(lambda (n)
(if (= n 0) #t
(is-odd? (- n 1))))) (define is-odd?
(lambda (n)
(if (= n 0) #f
(is-even? (- n 1)))))
These definitions are offered here only as simple illustrations of mutual recursion. Scheme already provides the primitive predicates even? and odd?.
6.1 letrec
If we wanted the above procedures as local variables, we could try to use alet form:
(let ((local-even? (lambda (n)
(if (= n 0) #t
(local-odd? (- n 1)))))
(local-odd? (lambda (n)
(if (= n 0) #f
(local-even? (- n 1))))))
(list (local-even? 23) (local-odd? 23)))
This won’t quite work, because the occurrences of local‑even? and local‑odd?in the initializations don’t refer to the lexical variables themselves. Changing the let to a let* won’t work either, for while the local‑even?inside local‑odd?’s body refers to the correct procedure value, thelocal‑odd? in local‑even?’s body still points elsewhere.
To solve problems like this, Scheme provides the form letrec:
(letrec ((local-even? (lambda (n)
(if (= n 0) #t
(local-odd? (- n 1)))))
(local-odd? (lambda (n)
(if (= n 0) #f
(local-even? (- n 1))))))
(list (local-even? 23) (local-odd? 23)))
The lexical variables introduced by a letrec are visible not only in theletrec-body but also within all the initializations. letrec is thus tailor-made for defining recursive and mutually recursive local procedures.
letrec专门用来定义为定义递归和相互递归的局部过程使用。
6.2 Named let
A recursive procedure defined using letrec can describe loops. Let’s say we want to display a countdown from 10:
(letrec ((countdown (lambda (i)
(if (= i 0) 'liftoff
(begin
(display i)
(newline)
(countdown (- i 1)))))))
(countdown 10))
This outputs on the console the numbers 10 down to 1, and returns the result liftoff.
Scheme allows a variant of let called named let to write this kind of loop more compactly:
scheme有一个named let可以让let有一个名字。
(let countdown ((i 10))
(if (= i 0) 'liftoff
(begin
(display i)
(newline)
(countdown (- i 1)))))
Note the presence of a variable identifying the loop immediately after thelet. This program is equivalent to the one written with letrec. You may consider the named let to be a macro (chap 8) expanding to the letrec form.
现在变量名countdown立即表示了整个loop,等价于上面用letrec的。
6.3 Iteration
countdown defined above is really a recursive procedure. Scheme can define loops only through recursion. There are no special looping or iteration constructs.
schemem只能通过递归来定义循环,没有loop或其他的循环购置。
Nevertheless, the loop as defined above is a genuine loop, in exactly the same way that other languages bill their loops. Ie, Scheme takes special care to ensure that recursion of the type used above will not generate the procedure call/return overhead.
Scheme does this by a process called tail-call elimination. If you look closely at the countdown procedure, you will note that when the recursive call occurs in countdown’s body, it is the tail call, or the very last thing done — each invocation of countdown either does not call itself, or when it does, it does so as its very last act. To a Scheme implementation, this makes the recursion indistinguishable from iteration. So go ahead, use recursion to write loops. It’s safe.
Here’s another example of a useful tail-recursive procedure:
(define list-position
(lambda (o l)
(let loop ((i ) (l l))
(if (null? l) #f
(if (eqv? (car l) o) i
(loop (+ i ) (cdr l)))))))
list‑position finds the index of the first occurrence of the object o in the list l. If the object is not found in the list, the procedure returns #f. list-position找出list表l中对象o第一次出现的位置。
Here’s yet another tail-recursive procedure, one that reverses its argument list “in place”, ie, by mutating the contents of the existing list, and without allocating a new one:
通过改变(mutate)存在的list,不用分配内存:
(define reverse!
(lambda (s)
(let loop ((s s) (r '()))
(if (null? s) r
(let ((d (cdr s)))
(set-cdr! s r)
(loop d s))))))
(reverse! is a useful enough procedure that it is provided primitively in many Scheme dialects, eg, MzScheme and Guile.)
For some numerical examples of recursion (including iteration), see Appendix C.
|
1
2
3
4
5
6
7
8
9
10
11
12
|
scheme@(guile-user)> (define list-reverse... (lambda (ls)... (let loop ((ls ls) (xs '()))... (if (null? ls)... xs... (loop (cdr ls)... (cons (car ls) xs))))))scheme@(guile-user)> (define ls '(1 2 3 4))scheme@(guile-user)> (list-reverse ls)(4 3 2 1)scheme@(guile-user)> ls(1 2 3 4) |
6.4 Mapping a procedure across a list
A special kind of iteration involves repeating the same action for each element of a list. Scheme offers two procedures for this situation: map andfor‑each.
The map procedure applies a given procedure to every element of a given list, and returns the list of the results. Eg,
(map add2 '(1 2 3))
=> (3 4 5)
The for‑each procedure also applies a procedure to each element in a list, but returns void. The procedure application is done purely for any side-effects it may cause. Eg,
for-each 函数主要是为了得到函数的副作用:
(for-each display
(list 1 2 3))
输出:1 2 3
如果用map会输出:
123(#<void> #<void> #<void>) (Racket下)
has the side-effect of displaying the strings (in the order they appear) on the console.
The procedures applied by map and for‑each need not be one-argument procedures. For example, given an n-argument procedure, map takes n lists and applies the procedure to every set of n of arguments selected from across the lists. Eg,
map和for-each的存储过程参数不必是一个参数的存储过程,可以是n个。
(map cons '(1 2 3) '(10 20 30))
=> ((1 . 10) (2 . 20) (3 . 30)) (map + '(1 2 3) '(10 20 30))
=> (11 22 33)
参考:http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-8.html
http://lispor.is-programmer.com/posts/23255.html
Teach Yourself Scheme in Fixnum Days 6 recursion递归的更多相关文章
- Teach Yourself Scheme in Fixnum Days 13 Jump跳转
Jumps One of the signal features of Scheme is its support for jumps or nonlocal control. Specificall ...
- recursion 递归以及递归的缺点
递归定义的算法有两部分: 递归基:直接定义最简单情况下的函数值: 递归步:通过较为简单情况下的函数值定义一般情况下的函数值. 应用条件与准则: (1)问题具有某种可借用的类同自身的子问题描述的性质: ...
- string formating字符串格式化,function函数,group组,recursion递归,练习
# -*- coding: UTF-8 -*- msg = 'i am {} my hobby is {}'.format('lhf',18) print(msg) msg1 = 'i am %s m ...
- Recursion递归
/*java.lang 核心包 如 String Math Integer System Thread等 拿来直接用 * java.awt 窗口工具 GUI * java.net 网络包 * java ...
- Github上的1000多本免费电子书重磅来袭!
Github上的1000多本免费电子书重磅来袭! 以前 StackOverFlow 也给出了一个免费电子书列表,现在在Github上可以看到时刻保持更新的列表了. 瞥一眼下面的书籍分类目录,你就能 ...
- Github 的一个免费编程书籍列表
Index Ada Agda Alef Android APL Arduino ASP.NET MVC Assembly Language Non-X86 AutoHotkey Autotools A ...
- Lisp语言学习的书
Scheme <How to Design Programs : An Introduction to Programming and Computing>(<程序设计方法>) ...
- racket学习-call/cc (let/cc)
Drracket continuation 文中使用let/cc代替call/cc Racket文档中,let/cc说明为: (let/cc k body ...+) Equivalent to (c ...
- 开始学习Scheme
开始学习Scheme 函数式编程(Functional Programming)是在MIT研究人工智能(Artificial Intelligence)时发明的,其编程语言为Lisp.确切地说,L ...
随机推荐
- Apache-common项目提供的工具
---- MD5加密与生成UUID例子(依赖于commons-io.jar):begin ------------------------------------------------------- ...
- Bestcoder #47 B Senior's Gun
Senior's Gun Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tot ...
- jquery之营销系统(补偿记录)
var appPath = getAppPath(); $(function(){ $("#opreateHtml").window("close"); $(& ...
- C# typeof Gettype is as &拆箱 装箱
有时候,我们不想用值类型的值,就是想用一个引用..Net提供了一个名为装箱(boxing)的机制,它允许根据值类型来创建一个对象,然后使用对这个新对象的一个引用. 首先,回顾两个重要的事实,1.对于引 ...
- 【转】tkinter实现的文本编辑器
此代码是看完如下教学视频实现的,所以算是[转载]吧: 效果: 代码: # -*- encodin ...
- 验证视图状态 MAC 失败。如果此应用程序由网络场或群集承载,请确保 <machineKey>
转自:http://hi.baidu.com/taotaowyx/blog/item/074bb8d83907bb3233fa1ce6.html 验证视图状态 MAC 失败.如果此应用程序由网络场或群 ...
- Swift中的便利构造器和构造器链
import UIKit // 1.一个类中至少有一个指定构造器, 其必须负责初始化类中所有的实例存储属性 // 2.便利构造器属于次要的, 辅助性的构造器 // 3.类中可以不定义便利构造器, 便利 ...
- jQuery操作元素
通常,我们在创建元素时,会使用以下代码: var p = document.createElement("p"); p.innerText = "this is para ...
- [转]在Linux里设置环境变量的方法
在Linux里设置环境变量的方法(export PATH) 一般来说,配置交叉编译工具链的时候需要指定编译工具的路径,此时就需要设置环境变量.例如我的mips-linux-gcc编译器在“/opt/a ...
- uva 846 - Steps
找出步數與距離的關係即可得解. 0步最多能抵達的距離是0 1步最多能抵達的距離是1(1) 2步最多能抵達的距離是2(1 1) 3步最多能抵達的距離是4(1 2 1) 4步最多能抵達的距離是6(1 2 ...