NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)

NEU:通过对高阶相似性的近似,加持快速网络嵌入

NRL的框架总结

  • First, Clarify the notations and formalize the problem of NRL.
  • Then, Introduce the concept of k-order proximity.
  • Finally, Summarize an NRL framework based on proximity matrix factorization and show that the aforementioned NRL methods fall into the category.

定义本文处理的图是无权无向图。这也是他的局限性。这是一个NEU算法的缺点!

对角阵 \(D_{ii}=d_i\)是\(v_i\)节点的度。\(A=D^{-1} \widetilde A\) ,是对邻接矩阵\(\widetilde A\)的归一化结果。
Laplacian Matrix: \(\widetilde L = D - \widetilde A\), 这是把\(\widetilde A\)全取反再在对角线上加上\(v_i\)的度数。
Normalized Laplacian Matrix: $ L = D^{-\frac{1}{2}}\widetilde L D^{-\frac{1}{2}} $

这俩Laplacian matrix 拿来何用?

K-order proximity

$ A\(和\)\widetilde L$ characterize 一阶相似性,建模局部节点对的proximity。
还是沿用GraRep的K-step转移概率矩阵:transition probability matrix 作为k-order proximity matrix.
\(A^k = \underbrace{A \cdot A ... A}_{k}\)

NRL Framework

Step1: Proximity Matrix Construction 相似性矩阵建立
相似性矩阵\(M \in \mathbb R^{|V|\times |V|}\)编码了 \(k\) 阶相似性,\(k = 1,2,...,K\) .有\(A\)是normalized邻接矩阵, \(M=\frac{A+A^2+...+A^K}{K}\)表示了K阶相似性矩阵的联合再平均。\(M\)通常是由\(A\)的\(K\)级的多项式表示,文章记为\(f(A) \in \mathbb R^{|V|\times |V|}\), \(K\)级是多少,depends on 相似度矩阵proximity matrix要表达的最大的proximity阶数。

Step2: Dimension Reduction 维数约减
寻找2个矩阵,\(R\) 和 \(C\).

  • \(R \in \mathbb R^{|V|\times d}\) 是节点的低维向量表达,
  • \(C \in \mathbb R^{|V|\times d}\)是context角色时,节点的低维向量表达。

矩阵的乘积\(R \cdot C^T\)就是对原网络的相似性矩阵\(M\)的近似。这里,不同的算法对\(R \cdot C^T\)和\(M\)的距离有不同的描述,employ different distance function. 比如,用\(M- R \cdot C^T\)

前人的方法与本框架的关系
Spectral Clustering:
DeepWalk:
GraRep:
TADW:
LINE:

观察和Problem Formalization

既然是2步框架,第一步是建立proximity matrix,怎么建立一个好的proximity matrix for NRL.在这篇文章里讨论。
至于第二步,维数约减,future Work.

Observation 1: 更高阶的,和更精确的proximity matrix可以提升模型的学习效果。也就是说,如果探索一个更高阶的polynomial proximity matrix \(f(A)\),NRL可以因此受益。

Observation 2:对大规模网络来说,对高阶的proximity matrix的精确计算是不可行的。实际上对proximity matrix的计算takes \(O(|V|^2)\) time. SVD的时间复杂度也随k 的增大,get dense,从而增加。

其实Observation1&2是矛盾的,前者要更精确,更高阶。后者又表明越高阶越难算。
因此如何高效地获得高阶的proximity matrix变为一个问题。
文章的解决方案是,先对低阶的proximity matrix的信息进行编码,以此作为一个基础,来避免重复的计算。

问题的构建
有个假设,\(R\)和\(C\)是某个NRL算法学到的表达,\(R \cdot C^T\) 对\(K\)阶的多项式proximity matrix \(f(A)\) 构成近似。目的就是学到一个更好的\(R'\)和\(C'\),它俩可以构成对\(g(A)\)的近似,这个\(g(A)\)比\(f(A)\)更高阶。并且,算法还要高效,should be efficient in the linear time of \(|V|\). 注意,时间复杂度下界是\(O(|V|d)\) ,which is the size of embedding matrix \(R\).

NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)的更多相关文章

  1. [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati

    [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...

  2. Network Embedding 论文小览

    Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...

  3. network embedding 需读论文

    Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: ...

  4. 论文:network embedding

    KDD2016: network embedding model: deep walk(kdd 2014): http://videolectures.net/kdd2014_perozzi_deep ...

  5. On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN

    Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...

  6. Content to Node: Self-Translation Network Embedding

    paper:https://dl.acm.org/citation.cfm?id=3219988 data & code:http://dm.nankai.edu.cn/code/STNE.r ...

  7. Context-Aware Network Embedding for Relation Modeling

    Context-Aware Network Embedding for Relation Modeling 论文:http://www.aclweb.org/anthology/P17-1158 创新 ...

  8. Network Embedding

    网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网 ...

  9. 论文阅读:Relation Structure-Aware Heterogeneous Information Network Embedding

    Relation Structure-Aware Heterogeneous Information Network Embedding(RHINE) (AAAI 2019) 本文结构 (1) 解决问 ...

随机推荐

  1. centos中nodejs npm安装cordova

    1.安装cordova npm install -g cordova --registry https://registry.npm.taobao.orgnpm install -g ionic -- ...

  2. 存储过程DT参数

    public static void TableValuedToDB(DataTable dt, string storedProcName, string TypeName) { using (Sq ...

  3. 如何在Visual Studio 2013中连接中国版的Azure

    http://diaosbook.com/Post/2014/8/23/connect-azure-cn-in-vs2013   VS2013的Server Explorer在第一次连接Azure的时 ...

  4. MTP 设备不显示

    win7 资源管理器(我的电脑)中不显示,但应用宝,豌豆荚工具能访问文件. 环境:WIN7 64位,手机HTC U11+ . 解决: 在设备管理器,计算机名称上右键-扫描检测硬件改动,等安装完手机驱动 ...

  5. 我的less学习之路

    less注释 可以在代码中使用块样式(/* */)和行内注释(//),但是当编译LESS代码时,单行注释不会显示在CSS文件中.开发中主要维护的是less文件,所以可以使用行内注释,最终编译的css文 ...

  6. tomcat整体架构

    1.背景 Tomcat作为JavaWeb领域的Web容器,目前在我们淘宝也使用的也非常广泛,现在基本上所有线上业务系统都是部署在Tomcat上.为了对平时开发的Web系统有更深入的理解以及出于好奇心对 ...

  7. PHP 函数获取文件名

    <?php // php 获取  文件名 function getExt($url){ $arr = parse_url($url); // URL 字符串予以解析,并将结果返回数组中 //pr ...

  8. Java判断两个List是否相同

    1.利用Java中为List提供的方法retainAll() /** * 判断两个List内的元素是否相同 * <p> * 此方法有bug 见Food.class * * @param l ...

  9. C/C++基础----特殊工具和技术 (重载new和delete,RTT,限定作用域的枚举类型,类成员指针,嵌套类,局部类,volatile,链接指示 extern “C”)

    重载new和delete 1调用operator new( 或new[])标准库函数分配足够大的.原始的.未命名的内存空间以便存储特定类型的对象 2编译器运行相应地构造函数以构造这些对象,并为其传入初 ...

  10. javac命令和java命令

    要知道java是分两部分的:一个是编译,一个是运行. javac:负责的是编译的部分,当执行javac时,会启动java的编译器程序.对指定扩展名的.java文件进行编译. 生成了jvm可以识别的字节 ...