NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)
NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)
NEU:通过对高阶相似性的近似,加持快速网络嵌入
NRL的框架总结
- First, Clarify the notations and formalize the problem of NRL.
- Then, Introduce the concept of k-order proximity.
- Finally, Summarize an NRL framework based on proximity matrix factorization and show that the aforementioned NRL methods fall into the category.
定义本文处理的图是无权无向图。这也是他的局限性。这是一个NEU算法的缺点!
对角阵 \(D_{ii}=d_i\)是\(v_i\)节点的度。\(A=D^{-1} \widetilde A\) ,是对邻接矩阵\(\widetilde A\)的归一化结果。
Laplacian Matrix: \(\widetilde L = D - \widetilde A\), 这是把\(\widetilde A\)全取反再在对角线上加上\(v_i\)的度数。
Normalized Laplacian Matrix: $ L = D^{-\frac{1}{2}}\widetilde L D^{-\frac{1}{2}} $
这俩Laplacian matrix 拿来何用?
K-order proximity
$ A\(和\)\widetilde L$ characterize 一阶相似性,建模局部节点对的proximity。
还是沿用GraRep的K-step转移概率矩阵:transition probability matrix 作为k-order proximity matrix.
\(A^k = \underbrace{A \cdot A ... A}_{k}\)
NRL Framework
Step1: Proximity Matrix Construction 相似性矩阵建立
相似性矩阵\(M \in \mathbb R^{|V|\times |V|}\)编码了 \(k\) 阶相似性,\(k = 1,2,...,K\) .有\(A\)是normalized邻接矩阵, \(M=\frac{A+A^2+...+A^K}{K}\)表示了K阶相似性矩阵的联合再平均。\(M\)通常是由\(A\)的\(K\)级的多项式表示,文章记为\(f(A) \in \mathbb R^{|V|\times |V|}\), \(K\)级是多少,depends on 相似度矩阵proximity matrix要表达的最大的proximity阶数。
Step2: Dimension Reduction 维数约减
寻找2个矩阵,\(R\) 和 \(C\).
- \(R \in \mathbb R^{|V|\times d}\) 是节点的低维向量表达,
- \(C \in \mathbb R^{|V|\times d}\)是context角色时,节点的低维向量表达。
矩阵的乘积\(R \cdot C^T\)就是对原网络的相似性矩阵\(M\)的近似。这里,不同的算法对\(R \cdot C^T\)和\(M\)的距离有不同的描述,employ different distance function. 比如,用\(M- R \cdot C^T\)
前人的方法与本框架的关系
Spectral Clustering:
DeepWalk:
GraRep:
TADW:
LINE:
观察和Problem Formalization
既然是2步框架,第一步是建立proximity matrix,怎么建立一个好的proximity matrix for NRL.在这篇文章里讨论。
至于第二步,维数约减,future Work.
Observation 1: 更高阶的,和更精确的proximity matrix可以提升模型的学习效果。也就是说,如果探索一个更高阶的polynomial proximity matrix \(f(A)\),NRL可以因此受益。
Observation 2:对大规模网络来说,对高阶的proximity matrix的精确计算是不可行的。实际上对proximity matrix的计算takes \(O(|V|^2)\) time. SVD的时间复杂度也随k 的增大,get dense,从而增加。
其实Observation1&2是矛盾的,前者要更精确,更高阶。后者又表明越高阶越难算。
因此如何高效地获得高阶的proximity matrix变为一个问题。
文章的解决方案是,先对低阶的proximity matrix的信息进行编码,以此作为一个基础,来避免重复的计算。
问题的构建:
有个假设,\(R\)和\(C\)是某个NRL算法学到的表达,\(R \cdot C^T\) 对\(K\)阶的多项式proximity matrix \(f(A)\) 构成近似。目的就是学到一个更好的\(R'\)和\(C'\),它俩可以构成对\(g(A)\)的近似,这个\(g(A)\)比\(f(A)\)更高阶。并且,算法还要高效,should be efficient in the linear time of \(|V|\). 注意,时间复杂度下界是\(O(|V|d)\) ,which is the size of embedding matrix \(R\).
NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)的更多相关文章
- [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...
- Network Embedding 论文小览
Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...
- network embedding 需读论文
Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: ...
- 论文:network embedding
KDD2016: network embedding model: deep walk(kdd 2014): http://videolectures.net/kdd2014_perozzi_deep ...
- On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN
Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...
- Content to Node: Self-Translation Network Embedding
paper:https://dl.acm.org/citation.cfm?id=3219988 data & code:http://dm.nankai.edu.cn/code/STNE.r ...
- Context-Aware Network Embedding for Relation Modeling
Context-Aware Network Embedding for Relation Modeling 论文:http://www.aclweb.org/anthology/P17-1158 创新 ...
- Network Embedding
网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网 ...
- 论文阅读:Relation Structure-Aware Heterogeneous Information Network Embedding
Relation Structure-Aware Heterogeneous Information Network Embedding(RHINE) (AAAI 2019) 本文结构 (1) 解决问 ...
随机推荐
- 倚天剑ss
倚天剑ss https://my.potvpn.com/ https://trial.ssbit.win/
- 阅读《7 Series FPGAs GTX/GTH Transceivers User Guide》
阅读<7 Series FPGAs GTX/GTH Transceivers User Guide> 1.GTX在XC7K325T芯片内的排列 2.参考时钟的配置 在GTXE2_COMMO ...
- NDK开发: 打印C代码的调试信息Log
1.引入头文件 #include <android/log.h> 2.修改Android.mk 在其中加入 LOCAL_LDLIBS+= -L$(SYSROOT)/usr/lib -llo ...
- 固态硬盘SSD,机械硬盘HDD,4K速度对比。
HDD - SSD -
- oracle--分组后获取每组数据第一条数据
SELECT * FROM (SELECT ROW_NUMBER() OVER(PARTITION BY cc.queuename ORDER BY cc.enroldate DESC) rn, cc ...
- 53题看透java线程
1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线程完成 ...
- 【Java安装】配置环境变量
添加环境变量: JAVA_HOME D:\Program Files\Java\jdk1.8.0_131 classpath: .;%JAVA_HOME%\lib;%JAVA_HOME%\lib\to ...
- PAT 乙级 1041 考试座位号(15) C++版
1041. 考试座位号(15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 每个PAT考生在参加考试时都会被分 ...
- NodeJs针对Express框架配置Mysql进行数据库操作
Express版本:4.14.1 说明:如下配置以express为例进行配置并进行测试,当然mysql中间件也可以在nodejs中单独使用. 参考:NodeJs的Mysql中间件Github地址 1. ...
- Jmeter(二十五)Jmeter之系统函数
都忘了Jmeter4.0已发布((*^▽^*))具体优化项还没体验,记录一下,传送门:http://jmeter.apache.org/download_jmeter.cgi Jmeter的系统函数已 ...