pandas中的series数据类型
import pandas as pd
import numpy as np
import names '''
写在前面的话:
1、series与array类型的不同之处为series有索引,而另一个没有;series中的数据必须是一维的,而array类型不一定
2、可以把series看成一个定长的有序字典,可以通过shape,index,values等得到series的属性
'''
# 1、series的创建
'''
(1)由列表或numpy数组创建
默认索引为0到N-1的整数型索引,如s1;
可以通过设置index参数指定索引,如s2;
通过这种方式创建的series,不是array的副本,即对series操作的同时也改变了原先的array数组,如s3
(2)由字典创建
字典的键名为索引,键值为值,如s4;
'''
n1 = np.array([1, 4, 5, 67, 7, 43, ])
s1 = pd.Series(n1)
# print(s1)
'''
0 1
1 4
2 5
3 67
4 7
5 43
dtype: int32
'''
s2 = pd.Series(n1, index=['a', 'b', 'c', 'd', 'e', 'f'])
# print(s2)
'''
a 1
b 4
c 5
d 67
e 7
f 43
dtype: int32
'''
# print(n1)
'''
[ 1 4 5 67 7 43]
'''
s1[2] = 100
s3 = s1
# print(s3)
'''
0 1
1 4
2 100
3 67
4 7
5 43
dtype: int32
'''
# print(n1)
'''
[ 1 4 100 67 7 43]
'''
dict1 = {}
for i in range(10, 15):
# names.get_last_name(),随机生成英文名字
dict1[names.get_last_name()] = i
s4 = pd.Series(dict1)
# print(s4)
'''
Poole 10
Allen 11
Davis 12
Roland 13
Brehm 14
dtype: int64
'''
# 2、series的索引
'''
(1)通过index取值,可以通过下标获取,也可以通过指定索引获取,如s6,s7
(2)通过.loc[](显示索引)获取,这种方式只能获取显示出来的索引,无法通过下标获取,如s7(推荐)
(3)隐式索引,使用整数作为索引值,使用.icol[],如s9(推荐)
'''
s5 = pd.Series(np.array([1, 5, 9, 7, 6, 4, 52, 8]), index=[list('abcdefgh')])
# print(s5)
'''
a 1
b 5
c 9
d 7
e 6
f 4
g 52
h 8
dtype: int32
'''
s6 = s5[2]
# print(s6)
'''
9
'''
s7 = s5['c']
# print(s7)
'''
c 9
dtype: int32
'''
s8 = s5.loc['c']
# print(s8)
'''
c 9
dtype: int32
'''
s9 = s5.iloc[2]
# print(s9)
'''
9
'''
# 3、series的切片
'''
1、series的切片和列表的用法类似,不同之处在于建议使用.loc[:]和.iloc[:],如s10和s11。当然直接使用[:]也可以。
2、当遇到特别长的series,我们支取出前5条或后5条数据时可以直接使用.head()或.tail()
'''
s5 = pd.Series(np.array([1, 5, 9, 7, 6, 4, 52, 8]), index=[list('abcdefgh')])
# print(s5)
'''
a 1
b 5
c 9
d 7
e 6
f 4
g 52
h 8
dtype: int32
'''
s10 = s5.loc['b':'g']
# print(s10)
'''
b 5
c 9
d 7
e 6
f 4
g 52
dtype: int32
'''
s11 = s5.iloc[1:7]
# print(s11)
'''
b 5
c 9
d 7
e 6
f 4
g 52
dtype: int32
'''
# 4、关于NaN
'''
(1)NaN是代表空值, 但不等于None。两者的数据类型不一样,None的类型为<class 'NoneType'>,而NaN的类型为<class 'float'>;
(2)可以使用pd.isnull(),pd.notnull(),或自带isnull(),notnull()函数检测缺失数据
'''
# print(type(None),type(np.nan))
'''
<class 'NoneType'> <class 'float'>
'''
s12 = pd.Series([1,2,None,np.nan],index=list('烽火雷电'))
# print(s12)
'''
烽 1.0
火 2.0
雷 NaN
电 NaN
dtype: float64
'''
# print(pd.isnull(s12))
'''
烽 False
火 False
雷 True
电 True
dtype: bool
'''
# print(pd.notnull(s12))
'''
烽 True
火 True
雷 False
电 False
dtype: bool
'''
# print(s12.notnull())
'''
烽 True
火 True
雷 False
电 False
dtype: bool
'''
# print(s12.isnull())
'''
烽 False
火 False
雷 True
电 True
dtype: bool
'''
# 取出series中不为空的值
# print(s12[s12.notnull()])
'''
烽 1.0
火 2.0
dtype: float64
'''
# series的name属性
''' '''
s12.name = '风水'
# print(s12)
'''
烽 1.0
火 2.0
雷 NaN
电 NaN
Name: 风水, dtype: float64
'''
pandas中的series数据类型的更多相关文章
- pandas中数据结构-Series
pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pan ...
- pandas中的Series
我们使用pandas经常会用到其下面的一个类:Series,那么这个类都有哪些方法呢?另外Series和DataFrame都继承了NDFrame这个类,df.to_sql()这个方法其实就是NDFra ...
- numpy中的ndarray与pandas中的series、dataframe的转换
一个ndarray是一个多维同类数据容器.每一个数组有一个dtype属性,用来描述数组的数据类型. Series是一种一维数组型对象,包含了一个值序列,并且包含了数据标签----索引(index). ...
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Python之Pandas中Series、DataFrame实践
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- 6.2Python数据处理篇之pandas学习系列(二)Series数据类型
目录 目录 (一)Series的组成 (二)Series的创建 1.从标量中创建Series数据 2.从列表中创建Series数据 3.从字典中创建Series数据 4.从ndarry中创建Serie ...
- Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...
- pandas中的分组技术
目录 1 分组操作 1.1 按照列进行分组 1.2 按照字典进行分组 1.3 根据函数进行分组 1.4 按照list组合 1.5 按照索引级别进行分组 2 分组运算 2.1 agg 2 ...
- pandas中的空值处理
1.空值 1.1 有两种丢失数据: None: Python自带的数据类型 不能参与到任何计算中 np.nan: float类型 能参与计算,但结果总是nan # None+2 # 报错 # np.n ...
随机推荐
- [Python] 函数基本
使用def 函数名(): 来定义一个函数,函数体一缩进块的形式写,返回结果是return xx 例如: def myAbs(x): if x >= 0: return x else: retur ...
- springboot中使用mybatis之mapper
Spring Boot中使用MyBatis传参方式:使用@Param@Insert("INSERT INTO USER(NAME, AGE) VALUES(#{name}, #{age})& ...
- Windows平台如何部署scrapy
0.安装Anaconda 这个不教了,自己去Anaconda官网上下个安装包,装上就好. https://www.anaconda.com/distribution/ 1.使用Anaconda创建一个 ...
- js-数字、字符串、布尔值的转换方式
来自JavaScript秘密花园 1.转换为字符串 '' + 10 === '10'; // true 将一个值加上空字符串可以轻松转换为字符串类型. 2.字符串转换为数字 +'010' === 10 ...
- JavaScrip 概述 -- 前端知识
JavaScript概述 ECMAScript和JavaScript的关系 1996年11月,JavaScript的创造者--Netscape公司,决定将JavaScript提交给国际标准化组织ECM ...
- 前端hash路由基本原理,及代码的基本实现
路由就是指随着浏览器地址栏的变化,展示给用户的页面也不相同. 早期的路由都是后端实现的,直接根据 url 来 reload 页面,页面变得越来越复杂服务器端压力变大,随着 ajax 的出现,页面实现非 ...
- 01-01基于SHELL的数据分析
#!/usr/bin/env bash for year in /root/Downloads/data/all/* do echo -ne `basename $year .gz`"\t& ...
- php.ini中date.timezone设置详解
date.timezone设置php5默认date.timezone为utc,改为date.timezone = PRC即可解决时间相差八小时的问题,但我在php的官方文档中看了半天也没找到这个参数啊 ...
- CSS 小结笔记之图标字体(IconFont)
本篇主要介绍一种非常好用的图标大法——图标字体(IconFont). 什么是图标字体?顾名思义,它是一种字体,只不过这个字体显示的并不是具体的文字之类的,而是各种图标. 网站上经常会用到各种图标,之前 ...
- LeetCode题解之N-ary Tree Preorder Traversal
1.题目描述 2.问题分析 采用递归方法是标准解法. 3.代码 vector<int> preorder(Node* root) { vector<int> v; preNor ...