【BZOJ3872】Ant colony(二分,动态规划)

题面

又是权限题。。。

Description

There is an entrance to the ant hill in every chamber with only one corridor leading into (or out of) it. At each entry, there are g groups of m1,m2,...,mg ants respectively. These groups will enter the ant hill one after another, each successive group entering once there are no ants inside. Inside the hill, the ants explore it in the following way:

Upon entering a chamber with d outgoing corridors yet unexplored by the group, the group divides into d groups of equal size. Each newly created group follows one of the d corridors. If d=0, then the group exits the ant hill.

If the ants cannot divide into equal groups, then the stronger ants eat the weaker until a perfect division is possible. Note that such a division is always possible since eventually the number of ants drops down to zero. Nothing can stop the ants from allowing divisibility - in particular, an ant can eat itself, and the last one remaining will do so if the group is smaller than d.

The following figure depicts m ants upon entering a chamber with three outgoing unexplored corridors, dividing themselves into three (equal) groups of floor(m/3) ants each.

A hungry anteater dug into one of the corridors and can now eat all the ants passing through it. However, just like the ants, the anteater is very picky when it comes to numbers. It will devour a passing group if and only if it consists of exactly k ants. We want to know how many ants the anteater will eat.

给定一棵有n个节点的树。在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁。这些蚂蚁会相继进入树中,而且要保证每一时刻每个节点最多只有一群蚂蚁。这些蚂蚁会按以下方式前进:

·在即将离开某个度数为d+1的点时,该群蚂蚁有d个方向还没有走过,这群蚂蚁就会分裂成d群,每群数量都相等。如果d=0,那么蚂蚁会离开这棵树。

·如果蚂蚁不能等分,那么蚂蚁之间会互相吞噬,直到可以等分为止,即一群蚂蚁有m只,要分成d组,每组将会有floor(m/d)只,如下图。

一只饥饿的食蚁兽埋伏在一条边上,如果有一群蚂蚁通过这条边,并且数量恰为k只,它就会吞掉这群蚂蚁。请计算一共有多少只蚂蚁会被吞掉。

Input

The first line of the standard input contains three integers n, g, k (2<=n,g<=1000000, 1<=k<=10^9), separated by single spaces. These specify the number of chambers, the number of ant groups and the number of ants the anteater devours at once. The chambers are numbered from 1 to n.

The second line contains g integers m[1],m[2],...,mg, separated by single spaces, where m[i] gives the number of ants in the i-th group at every entrance to the ant hill. The n-1 lines that follow describe the corridors within the ant hill; the i-th such line contains two integers a[i],b[i] (1<=a[i],b[i]<=n), separated by a single space, that indicate that the chambers no.a[i] and b[i] are linked by a corridor. The anteater has dug into the corridor that appears first on input.

第一行包含三个整数n,g,k,表示点数、蚂蚁群数以及k。

第二行包含g个整数m[1],m[2],...,m[g],表示每群蚂蚁中蚂蚁的数量。

接下来n-1行每行两个整数,表示一条边,食蚁兽埋伏在输入的第一条边上。

Output

Your program should print to the standard output a single line containing a single integer: the number of ants eaten by the anteater.

一个整数,即食蚁兽能吃掉的蚂蚁的数量。

Sample Input

7 5 3

3 4 1 9 11

1 2

1 4

4 3

4 5

4 6

6 7

Sample Output

21

题解

把树用第一条边拆成两半看,然后每个点都可以卡出一个数量的范围,递推下去,在每个叶子节点二分即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define inf 1ll*a[G]
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;++dg[u];}
int n,U,V,G,K,a[MAX];
ll l[MAX],r[MAX],ans;
void dfs(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
l[v]=min(inf+1,l[u]*(dg[u]-1));
r[v]=min(inf,(r[u]+1)*(dg[u]-1)-1);
dfs(v,u);
}
}
int find1(int x){return lower_bound(&a[1],&a[G+1],x)-a-1;}
int find2(int x){int p=upper_bound(&a[1],&a[G+1],x)-a;return a[p]==x?p:p-1;}
int main()
{
n=read();G=read();K=read();
for(int i=1;i<=G;++i)a[i]=read();
sort(&a[1],&a[G+1]);
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
if(i==1)U=u,V=v;
}
l[U]=l[V]=r[U]=r[V]=K;
dfs(U,V);dfs(V,U);
for(int i=1;i<=n;++i)
if(dg[i]==1)
if(l[i]<=r[i])
ans+=1ll*K*(find2(r[i])-find1(l[i]));
printf("%lld\n",ans);
return 0;
}

【BZOJ3872】Ant colony(二分,动态规划)的更多相关文章

  1. $bzoj3872\ [Poi2014]\ Ant\ colony$ 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 一年过去了依然没有头绪,,,$gql$的$NOIp$必将惨败了$kk$. 考虑倒推,因为知道知道除数和答案,所以可以推出被除数的范围,然后一路推到叶 ...

  2. bzoj 3872 [Poi2014]Ant colony——二分答案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 可以倒推出每个叶子节点可以接受的值域.然后每个叶子二分有多少个区间符合即可. 注意一开 ...

  3. bzoj 3872 [ Poi 2014 ] Ant colony —— 二分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 从食蚁兽所在的边向叶节点推,会得到一个渐渐放大的取值区间,在叶子节点上二分有几群蚂蚁符 ...

  4. 【BZOJ3872】[Poi2014]Ant colony 树形DP+二分

    [BZOJ3872][Poi2014]Ant colony Description 给定一棵有n个节点的树.在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁.这些蚂蚁会相继进入树中, ...

  5. [BZOJ3872][Poi2014]Ant colony

    [BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...

  6. bzoj 3872: [Poi2014]Ant colony -- 树形dp+二分

    3872: [Poi2014]Ant colony Time Limit: 30 Sec  Memory Limit: 128 MB Description   There is an entranc ...

  7. CodeForces 474F Ant colony ST+二分

    Ant colony 题解: 因为一个数是合法数,那么询问区间内的其他数都要是这个数的倍数,也就是这个区间内的gcd刚好是这个数. 对于这个区间的gcd来说,不能通过前后缀来算. 所以通过ST表来询问 ...

  8. Codeforces 474 F. Ant colony

    线段树求某一段的GCD..... F. Ant colony time limit per test 1 second memory limit per test 256 megabytes inpu ...

  9. Codeforces Round #271 (Div. 2) F. Ant colony 线段树

    F. Ant colony time limit per test 1 second memory limit per test 256 megabytes input standard input ...

随机推荐

  1. 你也可以自己写一个可爱 & 小资风格的Android加载等待自定义View - 转

    http://blog.csdn.net/carson_ho/article/details/77712072

  2. .net 设置Webbowser 版本

    .net 里的Webbowser控件默认情况是用IE7来渲染 可修改注册表试用是最新的版本来渲染: using System; using System.Collections.Generic; us ...

  3. POJ2533&&1836&&3176

    终于写完了POJ的DP专题,然而都是水题233 这次也把题目分了一下,先挑3道特别简单的讲一下 2533 题意:求最长上升子序列. 很简单,用一般的DP或者二分优化都可以过去 这里懒得写一般DP了,其 ...

  4. [2016北京集训测试赛17]crash的游戏-[组合数+斯特林数+拉格朗日插值]

    Description Solution 核心思想是把组合数当成一个奇怪的多项式,然后拉格朗日插值..:哦对了,还要用到第二类斯特林数(就是把若干个球放到若干个盒子)的一个公式: $x^{n}=\su ...

  5. mfc 线程的诞生和死亡

    知识点:  线程概念  线程的诞生  线程的死亡 一. 线程: 线程,是程序执行流的最小单元. 另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点 ...

  6. 创建并使用maven archetype的随笔

    maven骨架archetype的意义在于一些项目的基础项:如引入的maven组件,例如eureka,ribben等,不希望每次新建项目都重复做一遍,还有例如公司规范的log格式,单元测试工具等,在新 ...

  7. flask_admin 笔记四 自定义视图

    定义自己的视图 对于您的要求非常具体的情况,您很难用内置的ModelView类来满足这些需求,Flask-Admin使您可以轻松地完全控制并将自己的视图添加到界面中. 1)独立视图 可以通过扩展Bas ...

  8. Docker_容器化gitlab

    Docker部署接口自动化持续集成环境第一步,容器化一个Gitlab! 1:开放防火墙端口 sudo yum install curl openssh-server openssh-clients p ...

  9. 在 Azure 上部署 Asp.NET Core Web App

    在云计算大行其道的时代,当你要部署一个网站时第一选择肯定是各式各样的云端服务.那么究竟使用什么样的云端服务才能够以最快捷的方式部署一个 ASP.NET Core的网站呢?Azure 的 Web App ...

  10. GPT & UEFI Install Windows7

    安装介质以FAT或者FAT32分区安装介质添加UEFI支持文件(Windows7及其以前的系统,不支持UEFI启动) 从Windows8的安装文件中提取Bootmgfw.efi文件,重命名为BOOTX ...