【BZOJ3872】Ant colony(二分,动态规划)

题面

又是权限题。。。

Description

There is an entrance to the ant hill in every chamber with only one corridor leading into (or out of) it. At each entry, there are g groups of m1,m2,...,mg ants respectively. These groups will enter the ant hill one after another, each successive group entering once there are no ants inside. Inside the hill, the ants explore it in the following way:

Upon entering a chamber with d outgoing corridors yet unexplored by the group, the group divides into d groups of equal size. Each newly created group follows one of the d corridors. If d=0, then the group exits the ant hill.

If the ants cannot divide into equal groups, then the stronger ants eat the weaker until a perfect division is possible. Note that such a division is always possible since eventually the number of ants drops down to zero. Nothing can stop the ants from allowing divisibility - in particular, an ant can eat itself, and the last one remaining will do so if the group is smaller than d.

The following figure depicts m ants upon entering a chamber with three outgoing unexplored corridors, dividing themselves into three (equal) groups of floor(m/3) ants each.

A hungry anteater dug into one of the corridors and can now eat all the ants passing through it. However, just like the ants, the anteater is very picky when it comes to numbers. It will devour a passing group if and only if it consists of exactly k ants. We want to know how many ants the anteater will eat.

给定一棵有n个节点的树。在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁。这些蚂蚁会相继进入树中,而且要保证每一时刻每个节点最多只有一群蚂蚁。这些蚂蚁会按以下方式前进:

·在即将离开某个度数为d+1的点时,该群蚂蚁有d个方向还没有走过,这群蚂蚁就会分裂成d群,每群数量都相等。如果d=0,那么蚂蚁会离开这棵树。

·如果蚂蚁不能等分,那么蚂蚁之间会互相吞噬,直到可以等分为止,即一群蚂蚁有m只,要分成d组,每组将会有floor(m/d)只,如下图。

一只饥饿的食蚁兽埋伏在一条边上,如果有一群蚂蚁通过这条边,并且数量恰为k只,它就会吞掉这群蚂蚁。请计算一共有多少只蚂蚁会被吞掉。

Input

The first line of the standard input contains three integers n, g, k (2<=n,g<=1000000, 1<=k<=10^9), separated by single spaces. These specify the number of chambers, the number of ant groups and the number of ants the anteater devours at once. The chambers are numbered from 1 to n.

The second line contains g integers m[1],m[2],...,mg, separated by single spaces, where m[i] gives the number of ants in the i-th group at every entrance to the ant hill. The n-1 lines that follow describe the corridors within the ant hill; the i-th such line contains two integers a[i],b[i] (1<=a[i],b[i]<=n), separated by a single space, that indicate that the chambers no.a[i] and b[i] are linked by a corridor. The anteater has dug into the corridor that appears first on input.

第一行包含三个整数n,g,k,表示点数、蚂蚁群数以及k。

第二行包含g个整数m[1],m[2],...,m[g],表示每群蚂蚁中蚂蚁的数量。

接下来n-1行每行两个整数,表示一条边,食蚁兽埋伏在输入的第一条边上。

Output

Your program should print to the standard output a single line containing a single integer: the number of ants eaten by the anteater.

一个整数,即食蚁兽能吃掉的蚂蚁的数量。

Sample Input

7 5 3

3 4 1 9 11

1 2

1 4

4 3

4 5

4 6

6 7

Sample Output

21

题解

把树用第一条边拆成两半看,然后每个点都可以卡出一个数量的范围,递推下去,在每个叶子节点二分即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define inf 1ll*a[G]
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;++dg[u];}
int n,U,V,G,K,a[MAX];
ll l[MAX],r[MAX],ans;
void dfs(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
l[v]=min(inf+1,l[u]*(dg[u]-1));
r[v]=min(inf,(r[u]+1)*(dg[u]-1)-1);
dfs(v,u);
}
}
int find1(int x){return lower_bound(&a[1],&a[G+1],x)-a-1;}
int find2(int x){int p=upper_bound(&a[1],&a[G+1],x)-a;return a[p]==x?p:p-1;}
int main()
{
n=read();G=read();K=read();
for(int i=1;i<=G;++i)a[i]=read();
sort(&a[1],&a[G+1]);
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
if(i==1)U=u,V=v;
}
l[U]=l[V]=r[U]=r[V]=K;
dfs(U,V);dfs(V,U);
for(int i=1;i<=n;++i)
if(dg[i]==1)
if(l[i]<=r[i])
ans+=1ll*K*(find2(r[i])-find1(l[i]));
printf("%lld\n",ans);
return 0;
}

【BZOJ3872】Ant colony(二分,动态规划)的更多相关文章

  1. $bzoj3872\ [Poi2014]\ Ant\ colony$ 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 一年过去了依然没有头绪,,,$gql$的$NOIp$必将惨败了$kk$. 考虑倒推,因为知道知道除数和答案,所以可以推出被除数的范围,然后一路推到叶 ...

  2. bzoj 3872 [Poi2014]Ant colony——二分答案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 可以倒推出每个叶子节点可以接受的值域.然后每个叶子二分有多少个区间符合即可. 注意一开 ...

  3. bzoj 3872 [ Poi 2014 ] Ant colony —— 二分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 从食蚁兽所在的边向叶节点推,会得到一个渐渐放大的取值区间,在叶子节点上二分有几群蚂蚁符 ...

  4. 【BZOJ3872】[Poi2014]Ant colony 树形DP+二分

    [BZOJ3872][Poi2014]Ant colony Description 给定一棵有n个节点的树.在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁.这些蚂蚁会相继进入树中, ...

  5. [BZOJ3872][Poi2014]Ant colony

    [BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...

  6. bzoj 3872: [Poi2014]Ant colony -- 树形dp+二分

    3872: [Poi2014]Ant colony Time Limit: 30 Sec  Memory Limit: 128 MB Description   There is an entranc ...

  7. CodeForces 474F Ant colony ST+二分

    Ant colony 题解: 因为一个数是合法数,那么询问区间内的其他数都要是这个数的倍数,也就是这个区间内的gcd刚好是这个数. 对于这个区间的gcd来说,不能通过前后缀来算. 所以通过ST表来询问 ...

  8. Codeforces 474 F. Ant colony

    线段树求某一段的GCD..... F. Ant colony time limit per test 1 second memory limit per test 256 megabytes inpu ...

  9. Codeforces Round #271 (Div. 2) F. Ant colony 线段树

    F. Ant colony time limit per test 1 second memory limit per test 256 megabytes input standard input ...

随机推荐

  1. Codeforces round 1111

    CF Div 2 537 比赛链接 感觉题目难度OK,五个题都能做,后俩题考察人的翻译水平... 另外,$Claris$太强了... A 直接按照题意模拟,不知道为啥有人会被× 代码: #includ ...

  2. python 单体模式 的几种实现

    这是本人的一篇学习笔记. 本文用 python 实现单体模式,参考了这里 一.修改父类的 __dict__ class Borg: _shared_state = {} def __init__(se ...

  3. 洛咕 P3702 [SDOI2017]序列计数

    和https://www.cnblogs.com/xzz_233/p/10060753.html一样,都是多项式快速幂,还比那个题水. 设\(a[i]\)表示\([1,m]\)中$ \mod p\(余 ...

  4. 结对编程--C语言子程序词法分析

    一.问题描述 C语言小子集表的定义 2.设计单词属性值,各类表格(表示标识符表.常量表),单词符号及机内表示,采用标准输入和输出的方式.程序从键盘接收代码,遇到代码结束符"#"时结 ...

  5. Appium自动化部署及连接Appium服务

    Appium自动化部署: 1)安装appium桌面程序安装:超链接 2)安装客户端 pip install appium-python-client 3)安装服务器 安装 Nodejs 4)连接app ...

  6. (转载)利用SIFT和RANSAC算法(openCV框架)实现物体的检测与定位,并求出变换矩阵(findFundamentalMat和findHomography的比较) 置顶

    原文链接:https://blog.csdn.net/qq_25352981/article/details/46914837#commentsedit 本文目标是通过使用SIFT和RANSAC算法, ...

  7. Unity关于方法事件生命周期官方文档

    http://docs.unity3d.com/Manual/ExecutionOrder.html 一.组件运行的基本顺序 下图中创建类的顺序为A,B,C,A1,二运行的结果为A1,B,C,A. 可 ...

  8. cf 1029D

    题面 题目描述 给定含n个整数的数组a. 规定数x,y的合并为xy.如:数12与数3456的合并为数123456. 有数组中的位置对(i,j)(i≠j),计算使ai,aj的合并能被k整除的位置对数量. ...

  9. linux使用curl上传文件并且同时携带其它传递参数

    一般使用linux原生态的命令curl上传文件时命令如下 假如要上传文件是myfile.txt curl -F "file_name=@myfile.txt" -X POST &q ...

  10. 《Linux内核分析》第五周学习总结 扒开系统调用的三层皮(下)

    扒开系统调用的三层皮(下) 郝智宇 无转载 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.给Men ...