bzoj2115,戳我戳我

Solution:

  • 看得题解(逃,我太菜了,想不出这种做法
  • 那么丢个链接

Attention:

  • 板子别写错了 又写错了这次
  • \(long long\)是左移63位,多了会溢出就会出鬼

Code:

//It is coded by Ning_Mew on 5.29
#include<bits/stdc++.h>
#define LL long long
using namespace std; const int maxn=5e4+7,maxm=1e5+7; int n,m;
LL x[70],sum[maxn],ans;
struct Edge{
int nxt,to;LL dis;
}edge[maxm*2];
int head[maxn],cnt=0;
bool vis[maxn]; void add(int from,int to,LL dis){
edge[++cnt].nxt=head[from]; edge[cnt].dis=dis;
edge[cnt].to=to; head[from]=cnt;
}
void push(LL ss){
for(int i=63;i>=0;i--){
if((ss>>i)&1){
if(!x[i]){x[i]=ss;return;}
else{ss=(ss^x[i]);}
}
}
}
void dfs(int u){
vis[u]=1;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;
if(vis[v]){
push( ((sum[u]^edge[i].dis)^sum[v]) );
continue;
}else{
sum[v]=(sum[u]^edge[i].dis);
dfs(v);
}
}
} int main(){
freopen("in.in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;LL z;scanf("%d%d%lld",&x,&y,&z);
add(x,y,z);add(y,x,z);
}
memset(vis,false,sizeof(vis));
dfs(1);
ans=sum[n];
for(int i=63;i>=0;i--){
if((ans^x[i])>ans)ans=(ans^x[i]);
}
printf("%lld\n",ans);
return 0;
}

博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!

【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)的更多相关文章

  1. 【BZOJ-2115】Xor 线性基 + DFS

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status] ...

  2. BZOJ2115:[WC2011] Xor(线性基)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  3. BZOJ 2115: [Wc2011] Xor 线性基 dfs

    https://www.lydsy.com/JudgeOnline/problem.php?id=2115 每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值. 那么把全部的环丢到 ...

  4. BZOJ.2115.[WC2011]Xor(线性基)

    题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Soluti ...

  5. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

  6. 【题解】LOJ6060 Set(线性基)

    [题解]LOJ6060 Set(线性基) orz gql 设所有数的异或和为\(S\),答案是在\(\max (x_1+S\and x_1)\)的前提下\(\min x_1\)输出\(x_1\) 转换 ...

  7. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  8. 2115: [Wc2011] Xor (线性基+dfs)

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5714  Solved: 2420 题目链接:https://w ...

  9. BZOJ2115 [Wc2011] Xor 【线性基】

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 3915  Solved: 1633 [Submit][Stat ...

  10. bzoj 2115: [Wc2011] Xor【线性基+dfs】

    -老是想到最长路上 其实可以这样:把每个环的xor和都存起来,然后任选一条1到n的路径的xor和ans,答案就是这个ans在环的线性基上跑贪心. 为什么是对的--因为可以重边而且是无相连通的,并且对于 ...

随机推荐

  1. DRUPAL7 : 安装中文版本时遇到的问题

    http://yeenav.com是基于Drupal 7+汉化资源 搭建. 期间遇到一些麻烦, 做个记录. 首先把语言包drupal-7.0.zh-hans.po 放在htdocs/drupal-7. ...

  2. PuTTY+Xming实现X11的ssh转发

    1 需求分析 有些Linux程序还是不能完全离开窗口环境,或者说离开后操作不方便.其中Oracle就是这样一个程序,其工具程序大多数能够在纯命令行静默执行,如 OCI,DBCA,NetCA等,但是工作 ...

  3. 20155232《网络对抗》Exp2 后门原理与实践

    20155232<网络对抗>Exp2 后门原理与实践 问题回答 1.例举你能想到的一个后门进入到你系统中的可能方式? 通过网页上弹出来的软件自动安装 2.例举你知道的后门如何启动起来(wi ...

  4. 20155233 刘高乐 Exp9 Web安全基础

    WebGoat 输入java -jar webgoat-container-7.1-exec.jar 在浏览器输入localhost:8080/WebGoat,进入WebGoat开始实验 Cross- ...

  5. 20155304《网络对抗》Exp2 后门原理与实践

    20155332<网络对抗>Exp2 后门原理与实践 实验内容 (3.5分) (1)使用netcat获取主机操作Shell,cron启动 (0.5分) (2)使用socat获取主机操作Sh ...

  6. python中eval函数作用

    eval函数就是实现list.dict.tuple与str之间的转化str函数把list,dict,tuple转为为字符串 一.字符串转换成列表 a = "[[1,2], [3,4], [5 ...

  7. vue JointJS 实例demo

    前言 越来越发现,前端深入好难哦!虐成渣渣了. 需求:前端绘制灵活的关系图(此demo还是简单的,我的需求才跨出一小步) 安装 npm install jointjs 容器,工具栏 <templ ...

  8. 9、Dockerfile实战-Nginx

    上一节我们详解Dockerfile之后,现在来进行实战.我们通过docker build来进行镜像制作. build有如下选项: [root@localhost ~a]# docker build - ...

  9. 【Tableau】电商广告投放的地域分析

    分析师的职责是利用处理数据获取信息,提炼规律,帮助企业正确决策业务方向. 所以,一个好的分析师绝不能被数据所困,既要深入业务,理解业务,也要高瞻远瞩,以领导者的思维借助数据分析的辅助做出判断. [结构 ...

  10. openssl证书及配置

    我的环境是:Linux+Apache+MySQL+PHP 1.下载openssl 及相关依赖 #yum install -y openssl 2.进入目录 /etc/pki/tls/certs #cd ...