题目链接

求最大的存活概率,DP+记忆化。

用f[s][x][y][hp]表示在s状态,(x,y)点,血量为hp时的存活概率。

s是个三进制数,记录每个陷阱无害/有害/未知。

转移时比较容易,主要是在陷阱未知时需要知道当前状态这个陷阱为有害/无害的概率,并用这两个概率相加。

如何求某个状态下未知陷阱是否有害的概率呢(以下求有害概率,即 有害/(有害+无害))

DFS枚举每个陷阱已知有害/无害/未知的状态,我们需要处理未知陷阱在该状态下的概率。

枚举每个未知的陷阱,再枚举2^K的概率数组,只有当满足所有已知陷阱的状态时(未知的有/无解都加),才可以更新当前陷阱有害/无害的概率。

这个概率数组感觉比较迷啊。。是K个陷阱满足该状态时的概率。

注意: 再回到一个点(如起点)是可行的!不要随便剪。。

//15480kb	156ms
#include <cstdio>
#include <cctype>
#include <algorithm>
const int N=33,to[5]={1,0,-1,0,1}; int n,m,K,K_2,H,pi[N],sta[6];
double P[255][6],tmp[2],f[N][N][6][255];
bool vis[N][N][6][255];
char mp[N][N]; void DFS(int x)
{
if(x==K)
{
int now=0;
for(int i=K-1; ~i; --i) now=now*3+sta[i];
for(int p=0; p<K; ++p)
if(sta[p]==2)
{
tmp[0]=tmp[1]=0;//该陷阱有害/无害的概率
for(int i=0; i<K_2; ++i)
{
bool f=1;
for(int j=0; j<K; ++j)
if(sta[j]==2) ;
else if(((i>>j)&1)!=sta[j]) {f=0; break;}
if(f) tmp[(i>>p)&1]+=pi[i];//!
}
P[now][p]=tmp[1]/(tmp[0]+tmp[1]);
}
}
else
{
sta[x]=0, DFS(x+1);
sta[x]=1, DFS(x+1);
sta[x]=2, DFS(x+1);
}
}
inline int Change(int s,int p,int to)
{
int t=1; while(p--) t*=3;
return s-(2-to)*t;
}
#define Now f[x][y][hp][s]
double Solve(int x,int y,int hp,int s)
{
if(!hp) return 0;
if(mp[x][y]=='@') return 1.0;
if(vis[x][y][hp][s]) return f[x][y][hp][s];
vis[x][y][hp][s]=1;//状态比较多不好判重啊。。直接在这设vis=1.
for(int xn,yn,i=0; i<4; ++i)
{
xn=x+to[i], yn=y+to[i+1];
if(!xn||!yn||xn>n||yn>m||mp[xn][yn]=='#') continue;
char ch=mp[xn][yn];
if(ch=='.'||ch=='@'||ch=='$') Now=std::max(Now,Solve(xn,yn,hp,s));
else if(isalpha(ch)){
int ts=s,id=ch-'A';
for(int t=id; t; --t) ts/=3;
if(!(ts%3)) Now=std::max(Now,Solve(xn,yn,hp,s));
else if(ts%3==1) Now=std::max(Now,Solve(xn,yn,hp-1,s));
else Now=std::max(Now,Solve(xn,yn,hp-1,Change(s,id,1))*P[s][id]+Solve(xn,yn,hp,Change(s,id,0))*(1-P[s][id]));
}
}
return Now;
} int main()
{
scanf("%d%d%d%d",&n,&m,&K,&H);
int sx=0,sy;
for(int i=1; i<=n; ++i)
{
scanf("%s",mp[i]+1);
if(!sx){
for(int j=1; j<=m; ++j)
if(mp[i][j]=='$') sx=i,sy=j;
}
}
K_2=1<<K;
for(int i=0; i<K_2; ++i) scanf("%d",&pi[i]);
DFS(0);
int sta=1;
for(int i=K; i; --i) sta*=3;
// int sta=0;
// for(int i=K; i; --i) sta=sta*3+2;
printf("%.3lf",Solve(sx,sy,H,sta-1)); return 0;
}

BZOJ.2246.[SDOI2011]迷宫探险(DP 记忆化搜索 概率)的更多相关文章

  1. BZOJ2246 [SDOI2011]迷宫探险 【记忆化搜索dp + 概率】

    题目 输入格式 输出格式 仅包含一个数字,表示在执行最优策略时,人物活着走出迷宫的概率.四舍五入保留3位小数. 输入样例 4 3 3 2 .$. A#B A#C @@@ 143 37 335 85 9 ...

  2. BZOJ 2246 [SDOI2011]迷宫探险 ——动态规划

    概率DP 记忆化搜索即可,垃圾数据,就是过不掉最后一组 只好打表 #include <cstdio> #include <cstring> #include <iostr ...

  3. BZOJ 2246 [SDOI2011]迷宫探险 (记忆化搜索)

    题目大意:太长了,略 bzoj luogu 并没有想到三进制状压 题解: 3进制状压陷阱的状态,0表示这种陷阱的状态未知,1已知危险,2已知不危险 然后预处理出在当前状态下,每种陷阱有害的概率,设为$ ...

  4. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  5. 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索

    题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...

  6. [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树

    树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...

  7. poj1664 dp记忆化搜索

    http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...

  8. 状压DP+记忆化搜索 UVA 1252 Twenty Questions

    题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...

  9. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...

随机推荐

  1. bzoj千题计划213:bzoj2660: [Beijing wc2012]最多的方案

    http://www.lydsy.com/JudgeOnline/problem.php?id=2660 很容易想到是先把n表示成最大的两个斐波那契数相加,然后再拆分这两个斐波那契数 把数表示成斐波那 ...

  2. 一个ssm综合小案例-商品订单管理----写在前面

    学习了这么久,一直都是零零散散的,没有把知识串联起来综合运用一番 比如拦截器,全局异常处理,json 交互,RESTful 等,这些常见技术必须要掌握 接下来呢,我就打算通过这么一个综合案例把这段时间 ...

  3. Oozie 生成JMS消息并向 JMS Provider发送消息过程分析

    一,涉及到的工程 从官网下载源码,mvn 编译成 Eclipse工程文件:

  4. Java SpringMVC框架学习(二)httpServeltRequest和Model传值的区别

    HttpServletRequest 为什么大多程序在controller中给jsp传值时使用model.addAttribute()而不使用httpServeletRequest.setAttrib ...

  5. 如何用Procmon.exe来监视SQLSERVER的logwrite大小

    如何用Procmon.exe来监视SQLSERVER的logwrite大小 在微软亚太区数据库技术支持组官方博客里面,你会发现很多篇文章都用到了Procmon.exe这个工具 今天我也介绍一下这个工具 ...

  6. 【webService客户端】webservice客户端工具

    public static Object invokeWebService(String namespaces,String url, String method, Object[] params, ...

  7. web.xml 配置中classpath: 与classpath*:的区别——(十一)

    首先 classpath是指 WEB-INF文件夹下的classes目录 解释classes含义: 1.存放各种资源配置文件 eg.init.properties log4j.properties s ...

  8. 2017/05/22 java 基础 随笔

    多态:一种事物多种形态 前提:1.子父类继承关系 2.方法复写.重写 3.父类引用指向子类对象 成员变量: package com.huawei; public class Demo1 { publi ...

  9. TCP/UDP区别&&心跳包机制【转】

    转自:https://www.jianshu.com/p/6d93a3c21c34 UDP:用户数据报协议:主要用在实时性要求比较高的以及对质量相对较弱的地方.但是面对现在高质量的线路不会容易丢包,除 ...

  10. Linux DRM KMS 驱动简介【转】

    转自:https://blog.csdn.net/yangkuanqaz85988/article/details/48689521 Whoops,上次写完<Linux DRM Graphic ...