Identifier filtering

In the CAN protocol the identifier of a message is not associated with the address of a node but related to the content of the message.

Consequently a transmitter broadcasts its message to all receivers.

On message reception a receiver node decides - depending on the identifier value - whether the software needs the message or not.

If the message is needed, it is copied into the SRAM.

If not, the message must be discarded without intervention by the software.

To fulfill this requirement, the bxCAN Controller provides 28 configurable and scalable filter banks (27-0) to the application.

In other devices the bxCAN Controller provides 14 configurable and scalable filter banks (13-0) to the application

in order to receive only the messages the software needs.

This hardware filtering saves CPU resources which would be otherwise needed to perform filtering by software.

Each filter bank x consists of two 32-bit registers, CAN_FxR0 and CAN_FxR1. = 2 * 28 = 56 Registers

Scalable width

To optimize and adapt the filters to the application needs, each filter bank can be scaled independently.

Depending on the filter scale a filter bank provides:

One 32-bit filter for the STDID[10:0], EXTID[17:0], IDE and RTR bits.
Two 16-bit filters for the STDID[10:0], RTR, IDE and EXTID[17:15] bits.

Furthermore, the filters can be configured in mask mode or in identifier list mode.

Mask mode

In mask mode the identifier registers are associated with mask registers specifying

which bits of the identifier are handled as must match or as dont care.

Each bit of the register specifies whether the bit of the associated identifier register
must match with the corresponding bit of the expected identifier or not.

0: Dont care, the bit is not used for the comparison --- Don't Care
1: Must match, the bit of the incoming identifier must have the same level
has specified in the corresponding identifier register of the filter -- Do Care.

Identifier list mode

In identifier list mode, the mask registers are used as identifier registers.

Thus instead of defining an identifier and a mask, two identifiers are specified,

doubling the number of single identifiers.

All bits of the incoming identifier must match the bits specified in the filter registers.

Each bit of the register specifies the level of the corresponding bit of the expected identifier.

0: Dominant bit is expected
1: Recessive bit is expected

Filter bank scale and mode configuration

The filter banks are configured by means of the corresponding CAN_FMR register.

To configure a filter bank it must be deactivated by clearing the FACT bit in the CAN_FAR register.

The filter scale is configured by means of the corresponding FSCx bit in the CAN_FS1R register, refer to Figure 342.

The identifier list or identifier mask mode for the corresponding Mask/Identifier registers is configured

by means of the FBMx bits in the CAN_FMR register.

To filter a group of identifiers, configure the Mask/Identifier registers in mask mode.

To select single identifiers, configure the Mask/Identifier registers in identifier list mode.

Filters not used by the application should be left deactivated.

Each filter within a filter bank is numbered (called the Filter Number)

from 0 to a maximum dependent on the mode and the scale of each of the filter banks.

Concerning the filter configuration, refer to Figure 342.

Filter match index

Once a message has been received in the FIFO it is available to the application.

Typically, application data is copied into SRAM locations.

To copy the data to the right location the application has to identify the data by means of the identifier.

To avoid this, and to ease the access to the SRAM locations, the CAN controller provides a Filter Match Index.

This index is stored in the mailbox together with the message according to the filter priority rules.

Thus each received message has its associated filter match index.

The Filter Match index can be used in two ways:

Compare the Filter Match index with a list of expected values.
Use the Filter Match Index as an index on an array to access the data destination location.

For nonmasked filters, the software no longer has to compare the identifier.

If the filter is masked the software reduces the comparison to the masked bits only.

The index value of the filter number does not take into account the activation state of the

filter banks. In addition, two independent numbering schemes are used, one for each FIFO.

Refer to Figure 343 for an example.

Filter priority rules

Depending on the filter combination it may occur that an identifier passes successfully through several filters.

In this case the filter match value stored in the receive mailbox is chosen according to the following priority rules:

A 32-bit filter takes priority over a 16-bit filter.
For filters of equal scale, priority is given to the Identifier List mode over the Identifier Mask mode
For filters of equal scale and mode, priority is given by the filter number (the lower the number, the higher the priority).

The example above shows the filtering principle of the bxCAN. On reception of a message, the identifier is compared first with the filters configured in identifier list mode.

If there is a match, the message is stored in the associated FIFO and the index of the matching filter is stored in the Filter Match Index.

As shown in the example, the identifier matches with Identifier #2 thus the message content and FMI 2 is stored in the FIFO.

If there is no match, the incoming identifier is then compared with the filters configured in mask mode.

If the identifier does not match any of the identifiers configured in the filters, the message is discarded by hardware without disturbing the software.

STM32 Controller area network (bxCAN) Identifier filtering的更多相关文章

  1. 再谈STM32的CAN过滤器-bxCAN的过滤器的4种工作模式以及使用方法总结

    1. 前言 bxCAN是STM32系列最稳定的IP核之一,无论有哪个新型号出来,这个IP核基本未变,可见这个IP核的设计是相当成熟的.本文所讲述的内容属于这个IP核的一部分,掌握了本文所讲内容,就可以 ...

  2. Real-time storage area network

    A cluster of computing systems is provided with guaranteed real-time access to data storage in a sto ...

  3. 存储区域网络(Storage Area Network,简称SAN)

    存储区域网络(Storage Area Network,简称SAN)采用网状通道(Fibre Channel ,简称FC,区别与Fiber Channel光纤通道)技术,通过FC交换机连接存储阵列和服 ...

  4. mvc action controller area

    获取控制器名称: ViewContext.RouteData.Values["controller"].ToString(); 获取Action名称: ViewContext.Ro ...

  5. linux 下使用 tc 模拟网络延迟和丢包-使用 linux 模拟广域网延迟 - Emulating wide area network delays with Linux

    tc 是linux 内置的命令:使用man pages 查看 我们看到,其功能为 show / manipulate traffic control settings,可对操作系统进行流量控制: ne ...

  6. HDU 2125 Local area network

    简单DP,N×M的网格其中有一条边坏掉了,问从起点到终点的放法数 有两种方法,一种是DP很好理解 //#define LOCAL #include <cstdio> #include &l ...

  7. STM32(12)——CAN

    简介: CAN是Controller Area Network,是 ISO 国际标准化的串行通信协议. CAN  控制器根据两根线上的电位差来判断总线电平.总线电平分为显性电平和隐性电平,二者必居其一 ...

  8. stm32之CAN总线基础

    can总线协议概述: CAN是Controller Area Network的缩写,由德国博世公司开发:CAN通过ISO11891以及ISO11519进行了标准化:     CAN总线的特点: 1.多 ...

  9. CAN通信(STM32)

    1.CAN是控制器局域网络(Controller Area Network, CAN)的简称 (理论知识不做讲解了,太多了) 2.芯片选用:TJA1050 差分信号输入, 这里的显性电平CANH和CA ...

随机推荐

  1. GORM 中文文档

    由于篇幅问题,本文只是快速开始部分,下面是完整地址. 中文文档地址:http://gorm.book.jasperxu.com/ 中文文档项目地址:https://github.com/jasperx ...

  2. Sortable.js参数

    所有的事件回调函数都有两个参数:event和ui,浏览器自有event对象,和经过封装的ui对象ui.helper - 表示sortable元素的JQuery对象,通常是当前元素的克隆对象ui.pos ...

  3. C# 解决VS2008在win7找不到输入序列号的地方

    1.VS2008在Windows7 打开维护界面看不到可以输序列号的地方. 因为微软把他隐藏了. 2.我们可以借用工具把他显示出来 下载地址:http://www.zlsoft.com/techbbs ...

  4. gitminer

    https://github.com/UnkL4b/GitMiner + Autor: UnK + Blog: https://unkl4b.github.io + Github: https://g ...

  5. .NET C# Tostring format 格式化字符串

    一.数值型 formatCode 是可选的格式化代码字符串.必须用“{”和“}”将格式与其他字符分开.如果恰好在格式中也要使用大括号,可以用连续的两个大括号表示一个大括号,即: “{{”或者“}}”. ...

  6. ida自动编译配置

    这个勾选上,就会出现

  7. Demo005 小学四则运算自动生成程序

    目录 小学四则运算自动生成程序 0.传送门 1.题目要求 2.功能实现 2.1 总体设计 2.2 用户欢迎界面 2.3 用户功能界面 2.4 屏幕输出 2.5 文本输出 2.6 获取时间 2.7 用户 ...

  8. vs 加载 dll 缓慢

    https://jingyan.baidu.com/article/642c9d34e25cc2644b46f74b.html http://www.it610.com/article/2611781 ...

  9. 2018-2019-2 网络对抗技术 20165301 Exp4 恶意代码分析

    2018-2019-2 网络对抗技术 20165301 Exp4 恶意代码分析 实验内容 系统运行监控 使用如计划任务,每隔一分钟记录自己的电脑有哪些程序在联网,连接的外部IP是哪里.运行一段时间并分 ...

  10. C#获取特定进程CPU和内存使用率

    首先是获取特定进程对象,可以使用Process.GetProcesses()方法来获取系统中运行的所有进程,或者使用Process.GetCurrentProcess()方法来获取当前程序所对应的进程 ...