POJ1742--Coins(动态规划)
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
Input
Output
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
Sample Output
8
4
#include<iostream>
#include<algorithm>
#include<string.h>
int dp[][100003];
int val[],num[];
using namespace std;
int main(){
int n,m;
while(cin>>n>>m&&!(n==&&m==)){
memset(dp,,sizeof(dp));
for(int i=;i<n;i++){
cin>>val[i];
}
for(int i=;i<n;i++){
cin>>num[i];
}
dp[][]=;
for(int i=;i<n;i++){
for(int j=;j<=m;j++){
for(int w=;w<=num[i]&&w*val[i]<=j;w++){
dp[i+][j]|=dp[i][j-w*val[i]];
}
}
}
int ans=count(dp[n]+,dp[n]++m,);
cout<<ans<<endl;
}
return ;
}
dp[i+1][j]表示前i种数字能否拼成j
一般用DP求取bool结果的话会有不少浪费,同样的复杂度可以获得很多信息
优化
dp[i+1][j]:用前i种数加和得到j时第i种数最多能剩几个
- dp[i][j] := 用前i种硬币凑成j时第i种硬币最多能剩余多少个(-1表示配不出来)
- 如果dp[i - 1][j] >= 0(前i-1个数可以凑出j,那么第i个数根本用不着)直接为C[i]
- dp[i][j] = 如果j < A[i]或者dp[i][j - a[i]] <=0 (面额太大或者在配更小的数的时候就用光了)-1
- 其他(将第i个数用掉一个) dp[i][j-a[i]] - 1
#include<iostream>
#include<algorithm>
#include<string.h>
int dp[][100003];
int val[],num[];
using namespace std;
int main(){
int n,m;
while(cin>>n>>m&&!(n==&&m==)){
memset(dp,-,sizeof(dp));
for(int i=;i<n;i++){
cin>>val[i];
}
for(int i=;i<n;i++){
cin>>num[i];
}
dp[][]=;
for(int i=;i<n;i++){
for(int j=;j<=m;j++){
if(dp[i][j]>=)
dp[i+][j]=num[i];
else if(j<val[i]||dp[i+][j-val[i]]<=){
dp[i+][j]=-;
}
else{
dp[i+][j]=dp[i+][j-val[i]]-;
}
}
}
int ans=;
for(int i=;i<=m;i++){
if(dp[n][i]!=-)
ans++;
}
cout<<ans<<endl;
}
return ;
}
数组重复利用
#include<iostream>
#include<algorithm>
#include<string.h>
int dp[];
int val[],num[];
using namespace std;
int main(){
int n,m;
while(cin>>n>>m&&!(n==&&m==)){
memset(dp,-,sizeof(dp));
for(int i=;i<n;i++){
cin>>val[i];
}
for(int i=;i<n;i++){
cin>>num[i];
}
dp[]=;
for(int i=;i<n;i++){
for(int j=;j<=m;j++){
if(dp[j]>=)
dp[j]=num[i];
else if(j<val[i]||dp[j-val[i]]<=){
dp[j]=-;
}
else{
dp[j]=dp[j-val[i]]-;
}
}
}
int ans=;
for(int i=;i<=m;i++){
if(dp[i]!=-)
ans++;
}
cout<<ans<<endl;
}
return ;
}
POJ1742--Coins(动态规划)的更多相关文章
- POJ1742 coins 动态规划之多重部分和问题
原题链接:http://poj.org/problem?id=1742 题目大意:tony现在有n种硬币,第i种硬币的面值为A[i],数量为C[i].现在tony要使用这些硬币去买一块价格不超过m的表 ...
- POJ1742 Coins(男人八题之一)
前言 大名鼎鼎的男人八题,终于见识了... 题面 http://poj.org/problem?id=1742 分析 § 1 多重背包 这很显然是一个完全背包问题,考虑转移方程: DP[i][j]表示 ...
- POJ1742 Coins[多重背包可行性]
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 34814 Accepted: 11828 Descripti ...
- POJ1742:Coins(多重背包)
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- poj1742 Coins【多重背包】【贪心】
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions:43969 Accepted: 14873 Descriptio ...
- poj1742 Coins(多重背包+单调队列优化)
/* 这题卡常数.... 二进制优化或者单调队列会被卡 必须+上个特判才能过QAQ 单调队列维护之前的钱数有几个能拼出来的 循环的时候以钱数为步长 如果队列超过c[i]就说明队头的不能再用了 拿出来 ...
- POJ1742 Coins 背包
题目大意:给出一些钱币的价值和对应的数目,求在一定价值限定下这些钱币能凑成的价值数. 本题用多重背包直接拆分或二进制拆分法都太慢.说起处理一组物品,完全背包可算是比较效率高的,但是本题中物体的数目是有 ...
- $POJ1742\ Coins$ 多重背包+贪心
Vjudge传送门 $Sol$ 首先发现这是一个多重背包,所以可以用多重背包的一般解法(直接拆分法,二进制拆分法...) 但事实是会TLE,只能另寻出路 本题仅关注“可行性”(面值能否拼成)而不是“最 ...
- 背包问题(01背包,完全背包,多重背包(朴素算法&&二进制优化))
写在前面:我是一只蒟蒻~~~ 今天我们要讲讲动态规划中~~最最最最最~~~~简单~~的背包问题 1. 首先,我们先介绍一下 01背包 大家先看一下这道01背包的问题 题目 有m件物品和一个容量为 ...
- 常规DP专题练习
POJ2279 Mr. Young's Picture Permutations 题意 Language:Default Mr. Young's Picture Permutations Time L ...
随机推荐
- Vue 快速原型开发
快速原型开发 注意: 是:serve 而不是 server 通过使用 vue serve 和 vue build 命令对单个 *.vue 文件进行快速原型开发,不过这需要先额外安装一个全局的扩展 go ...
- Oracle性能优化3-sql优化一定要等价
做sql优化的前提瞧见是sql等价 1.MAX MIN写法的分与合 drop table t purge; create table t as select * from dba_objects; a ...
- 什么是MVVM模式
问题引入1 场景一:团队辛辛苦苦完成了一个项目,抱着激动的心情去给用户做demo,而用户给你的反馈是UI很不满意,要重新修改,否则拒绝验收.大规模修改UI,晴天霹雳!2 场景二:产品在一家客户上线运行 ...
- 立即响应ScrollView上的子视图的手势
self.myScrollView.delaysContentTouches = YES; self.myScrollView.CanCancelContentTouches=NO; 写了一个继承sc ...
- UOJ 274 温暖会指引我们前进 - LCT
Solution 更新掉路径上温暖度最小的边就可以了~ Code #include<cstdio> #include<cstring> #include<algorith ...
- How to Disable/Enable IP forwarding in Linux
This article describes how to Disable or Enable an IP forwarding in Linux. Current IP forwarding sta ...
- DNSlog实现Mysql注入
step1: 通过DNSlog盲注需要用到load_file()函数.show variables like '%secure%' 查看load_file()可以读取的磁盘. 1.当secure_fi ...
- [JAVA]多线程下如何确定执行顺序性
最近在讨论一个下载任务:要求文件下载后进行打包,再提供给用户下载: 如何确保打包的线程在所有下载文件的线程执行完成后进行呢? 看看下面三个兄弟的本事: CountDownLatch.CyclicBar ...
- IOS初级:UIScrollView & UIPageControl
UIScrollView其实构建的就像一列很长的火车,每滑动一个屏幕,展示一节车厢. //主屏幕高度 #define kScreenHeight [UIScreen mainScreen].bound ...
- [C#]this.Invoke和this.BeginInvoke的区别
private void button1_Click(object sender, EventArgs e) { "; this.Invoke(new EventHandler(delega ...