Magic Powder - 2 (CF 670_D)
http://codeforces.com/problemset/problem/670/D2
The term of this problem is the same as the previous one, the only exception — increased restrictions.
The first line contains two positive integers n and k (1 ≤ n ≤ 100 000, 1 ≤ k ≤ 109) — the number of ingredients and the number of grams of the magic powder.
The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 109), where the i-th number is equal to the number of grams of the i-th ingredient, needed to bake one cookie.
The third line contains the sequence b1, b2, ..., bn (1 ≤ bi ≤ 109), where the i-th number is equal to the number of grams of the i-th ingredient, which Apollinaria has.
Print the maximum number of cookies, which Apollinaria will be able to bake using the ingredients that she has and the magic powder.
1 1000000000
1
1000000000
2000000000
10 1
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1 1 1 1 1 1 1 1 1 1
0
3 1
2 1 4
11 3 16
4
4 3
4 3 5 6
11 12 14 20
3
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <map>
using namespace std; #define N 110000
#define met(a, b) memset(a, b, sizeof(a))
#define INF 0x3f3f3f3f
const long long Max = ;
typedef long long LL; LL a[N], b[N];
LL n, k; LL Judge(LL mid)
{
LL i, K1=k, K2=k; for(i=; i<=n; i++)
{
if(b[i]<a[i]*mid)
{
K1 -= (a[i]*mid - b[i]);
if(K1<)
return -;
}
} for(i=; i<=n; i++)
{
if(b[i]<a[i]*(mid+))
{
K2 -= (a[i]*(mid+) - b[i]);
if(K2<)
return ;
}
} return ;
} int main()
{ while(scanf("%I64d%I64d", &n, &k)!=EOF)
{
LL i;
LL mid, L=, R=Max, ans; met(a, );
met(b, ); for(i=; i<=n; i++)
scanf("%I64d", &a[i]);
for(i=; i<=n; i++)
scanf("%I64d", &b[i]); while(L<R)
{
mid = (L+R)/;
ans = Judge(mid);
if(ans==)
L = R = mid;
if(ans>)
L = mid + ;
if(ans<)
R = mid - ;
} printf("%I64d\n", L);
} return ;
}
Magic Powder - 2 (CF 670_D)的更多相关文章
- 2013 多校联合 F Magic Ball Game (hdu 4605)
http://acm.hdu.edu.cn/showproblem.php?pid=4605 Magic Ball Game Time Limit: 10000/5000 MS (Java/Other ...
- I - Magic FZU - 2280 (字符串hash)
题目链接: I - Magic FZU - 2280 学习链接: FZU - 2280 I - Magic 题目大意: 给你nn个字符串,每个字符串有一个值ww,有qq次询问,一共两种操作:一是“1, ...
- Mike and Feet(CF 547B)
Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- 2019.4.24 一题(CF 809E)——推式子+虚树
题目:http://codeforces.com/contest/809/problem/E
- (求凹包) Bicycle Race (CF 659D) 简单题
http://codeforces.com/contest/659/problem/D Maria participates in a bicycle race. The speedway t ...
- Magic Odd Square (思维+构造)
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both ma ...
- 线段树题集 (cf版)
lazy区间修改 : http://acm.hdu.edu.cn/showproblem.php?pid=4902 (hdu4902) http://acm.hdu.edu.cn/showpr ...
- 聚类算法之BIRCH(Java实现)转载
http://www.cnblogs.com/zhangchaoyang/articles/2200800.html http://blog.csdn.net/qll125596718/article ...
- 固态硬盘SSD与闪存(Flash Memory)
转自:http://qiaodahai.com/solid-state-drives-ssd-and-flash-memory.html 固态硬盘SSD(Solid State Drive)泛指使用N ...
随机推荐
- vs2015未能计算子级
数据源 属性里边值 设置出现问题
- Linux硬件相关
1)查看设备号/厂商号 http://blog.csdn.net/styshoo/article/details/51203881 二.硬件厂商 1)瑞传科技股份有限公司 https://www. ...
- mtcp的快速编译(连接)
mtcp的快速编译 http://mos.kaist.edu/guide/config/03_build_mtcp.html 介绍DPDK中使用mtcp的文档 https://dpdksummit.c ...
- Android.InstallAntOnMacOSX
在Mac OS X上安装ant http://blog.csdn.net/crazybigfish/article/details/18215439
- python之初接触
编程语言相关 1什么是编程语言 编程语言即语言,语言的本质就是沟通,因而编程语言与英语 .法语.日语等所有语言并无区别,只不过英语是人与人之间沟通的介质,而编程语言则是程序员与计算机沟通的介质. 程序 ...
- Mac下配置域名和网站测试环境
一.在 /etc/hosts 下配置相关域名 1, control+space 打开spotlight, 搜索“terminal” 2, 打开Terminal 3, 在terminal界面中输入 ...
- HDU 4455.Substrings
Substrings Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- the example of dlsym
void *handle; int i, (*fptr)(int); /* open the needed object */ handle = dlopen("/usr/home/me/l ...
- 大神的P图过程!快来偷窥!
来自美国的艺术家James(@jameasons) 平时我们总是能看到一些大神合成出这样的图片, 但是他们P图的过程是怎样的,很多人都是不知道的. 接下来再看看这位大神的其他作品, 如果你看了上面视频 ...
- ApplicationContext(九)初始化非延迟的 bean
ApplicationContext(九)初始化非延迟的 bean 此至,ApplicationContext 已经完成了全部的准备工作,开始初始化剩余的 bean 了(第 11 步). public ...