题解

我现在真是太特么老年了

一写数据结构就颓废,难受

这题就是用lct维护子树

???lct怎么维护子树

这样想,我们给每个点记录虚边所在的子树大小,只发生在Access和link的时候

这样的话我们在这两个操作的时候顺带维护一下就好了

Access的时候加上新的虚儿子,减掉变成实边的那个儿子

link直接加上虚儿子的大小即可

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M;
namespace lct {
struct node {
int lc,rc,fa,sum,siz;
bool rev;
}tr[MAXN];
#define lc(u) tr[u].lc
#define rc(u) tr[u].rc
#define fa(u) tr[u].fa
#define sum(u) tr[u].sum
#define siz(u) tr[u].siz
#define rev(u) tr[u].rev
void Init() {
for(int i = 1 ; i <= N ; ++i) sum(i) = siz(i) = 1;
}
void reverse(int u) {
swap(lc(u),rc(u));
rev(u) ^= 1;
}
void pushdown(int u) {
if(rev(u)) {
reverse(lc(u));
reverse(rc(u));
rev(u) = 0;
}
}
void update(int u) {
sum(u) = siz(u);
sum(u) += sum(lc(u)) + sum(rc(u));
}
bool isRoot(int u) {
if(!fa(u)) return true;
else return rc(fa(u)) != u && lc(fa(u)) != u;
}
bool which(int u) {
return u == rc(fa(u));
}
void rotate(int u) {
int v = fa(u);
if(!isRoot(v)) { (v == lc(fa(v)) ? lc(fa(v)) : rc(fa(v))) = u;}
fa(u) = fa(v);fa(v) = u;
if(u == lc(v)) {
fa(rc(u)) = v;lc(v) = rc(u);rc(u) = v;
}
else {
fa(lc(u)) = v;rc(v) = lc(u);lc(u) = v;
}
update(v);
}
void Splay(int u) {
static int que[MAXN],qr;
qr = 0;
int x;
for(x = u ; !isRoot(x) ; x = fa(x)) que[++qr] = x;
que[++qr] = x;
for(int i = qr ; i >= 1 ; --i) pushdown(que[i]);
while(!isRoot(u)) {
if(!isRoot(fa(u))) {
if(which(fa(u)) == which(u)) rotate(fa(u));
else rotate(u);
}
rotate(u);
}
update(u);
}
void Access(int u) {
int x;
for(x = 0 ; u ; x = u , u = fa(u)) {
Splay(u);
siz(u) += sum(rc(u));
siz(u) -= sum(x);
rc(u) = x;
update(u);
}
}
void Makeroot(int u) {
Access(u);Splay(u);
reverse(u);
}
void Link(int u,int v) {
Makeroot(u);Makeroot(v);Splay(v);
fa(v) = u;siz(u) += sum(v);Splay(u);
}
int64 Query(int u,int v) {
Makeroot(u);Access(v);Splay(u);update(v);
return 1LL * (sum(u) - sum(v)) * sum(v);
}
}
void Solve() {
char op[5];
int x,y;
read(N);read(M);
lct::Init();
for(int i = 1 ; i <= M ; ++i) {
scanf("%s",op + 1);read(x);read(y);
if(op[1] == 'A') {
lct::Link(x,y);
}
else {
out(lct::Query(x,y));enter;
}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【LOJ】#2230. 「BJOI2014」大融合的更多相关文章

  1. LOJ#2230. 「BJOI2014」大融合

    LOJ#2230. 「BJOI2014」大融合 题目描述 小强要在$N$个孤立的星球上建立起一套通信系统.这套通信系统就是连接$N$个点的一个树.这个树的边是一条一条添加上去的. 在某个时刻,一条边的 ...

  2. Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)

    链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https: ...

  3. loj2230 「BJOI2014」大融合

    LCT裸题 我LCT学傻了这题明显可以树剖我不会树剖了 本来的siz是Splay上的子树和,并没有什么用. 所以每个点维护虚子树和和子树和 虚子树和即虚边连接的子树和,且只有在access和link操 ...

  4. @loj - 2092@ 「ZJOI2016」大森林

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 家里有一个大森林,里面有 n 棵树,编号从 1 到 n. ...

  5. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  6. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  7. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  8. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

  9. loj#2009.「SCOI2015」小凸玩密室

    题目链接 loj#2009. 「SCOI2015」小凸玩密室 题解 树高不会很高<=20 点亮灯泡x,点亮x的一个子树,再点亮x另外的子树, 然后回到x的父节点,点亮父节点之后再点亮父节点的其他 ...

随机推荐

  1. MT【175】刚刚凑巧

    已知$\Delta ABC$满足$\sin^2A+\sin^2B+\sin^2C=2\sqrt{3}\sin A\sin B\sin C,a=2$,求$A$ 提示:利用正弦定理:$a^2+b^2+c^ ...

  2. Problem A: 种树 解题报告

    Problem A: 种树 Description 很久很久以前,一个蒟蒻种了一棵会提问的树,树有\(n\)个节点,每个节点有一个权值,现在树给出\(m\)组询问,每次询问两个值:树上一组点对\((x ...

  3. 洛谷 P2671 求和 解题报告

    P2671 求和 题目描述 一条狭长的纸带被均匀划分出了\(n\)个格子,格子编号从\(1\)到\(n\) .每个格子上都染了一种颜色\(color_i\)用\([1,m]\)当中的一个整数表示),并 ...

  4. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  5. 【BZOJ 3451】Tyvj1953 Normal 思维题+期望概率+FFT+点分治

    我感觉是很强的一道题……即使我在刷专题,即使我知道这题是fft+点分治,我仍然做不出来……可能是知道是fft+点分治限制了我的思路???(别做梦了,再怎样也想不出来的……)我做这道题的话,一看就想单独 ...

  6. 收藏:Windows消息机制

    百度百科介绍的windows消息机制也不错:http://baike.baidu.com/view/672379.htm Windows的应用程序一般包含窗口(Window),它主要为用户提供一种可视 ...

  7. CodeForces 获得数据

    针对程序的输出可以看见 CodeForces :当输入.输出超过一定字符,会隐藏内容 所以:分若干个程序进行输入数据的获取 1. ;i<=q;i++) { scanf("%ld%ld% ...

  8. java Random.nextInt()方法

    转: java Random.nextInt()方法 lic int nextInt(int n) 该方法的作用是生成一个随机的int值,该值介于[0,n)的区间,也就是0到n之间的随机int值,包含 ...

  9. Saltstack-API(十二)

    Saltstack-API 官方文档 https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.htm ...

  10. d3浅谈

    d3是一个及其庞大的库,有20个模块,大小也达到了216kb,是JQ1.x的2倍多,JQ3.x的3倍多,JQ本来就挺笨重的一个库,d3更是如此,但是它的功能确实很强悍~ d3的定位是一个科学计算库,并 ...