CF258D Little Elephant and Broken Sorting (带技巧的DP)
题面
$ solution: $
这道题主要难在考场上能否想到这个思路(即如何设置状态)(像我这样的蒟蒻就想不到呀QAQ)不过这一题确实很神奇!
$ f[i][j]: $ 表示第 $ a_i $ 个数比第 $ a_j $ 个数大的几率,这样设置状态比较好转移:对于每一次 $ a_i $ 与 $ a_j $ 的交换,他只会影响到序列里,每一个数与 $ a_i $ , $ a_j $ 的胜率(一共有 $ n $ 次交换,只要每次交换复杂度在 $ O(n) $ 级别这道题就解决了了)。而且我们不难发现转移时每一个数与 $ a_i $ , $ a_j $ 胜率的修改是 $ O(1) $ 的:
- $ f[i][j]=(f[i][j]+f[j][i])\times 0.5 $
- $ f[j][i]=(f[i][j]+f[j][i])\times 0.5 $
所以把数列中每一位修改后复杂度刚好为 $ O(n) $ 级别,满足要求!
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
int n,m;
int a[1001];
db ans,f[1001][1001];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
int main(){
//freopen("inversion.in","r",stdin);
//freopen("inversion.out","w",stdout);
n=qr(),m=qr();
for(rg i=1;i<=n;++i)a[i]=qr();
for(rg i=1;i<=n;++i)
for(rg j=i+1;j<=n;++j){
if(a[i]>a[j])f[i][j]=1;
if(a[j]>a[i])f[j][i]=1;
}
for(rg k=1,i,j;k<=m;++k){
i=qr(),j=qr();
for(rg k=1;k<=n;++k){
if(i!=k&&j!=k){
f[k][i]=f[k][j]=(f[k][i]+f[k][j])*0.5;
f[i][k]=f[j][k]=(f[j][k]+f[i][k])*0.5;
}
}f[i][j]=f[j][i]=(f[i][j]+f[j][i])*0.5;
}
for(rg i=1;i<=n;++i)
for(rg j=i+1;j<=n;++j)
ans+=f[i][j];
printf("%.8lf",ans);
return 0;
}
CF258D Little Elephant and Broken Sorting (带技巧的DP)的更多相关文章
- CF258D Little Elephant and Broken Sorting/AGC030D Inversion Sum 期望、DP
传送门--Codeforces 传送门--Atcoder 考虑逆序对的产生条件,是存在两个数\(i,j\)满足\(i < j,a_i > a_j\) 故设\(dp_{i,j}\)表示\(a ...
- CodeForces 258D Little Elephant and Broken Sorting(期望)
CF258D Little Elephant and Broken Sorting 题意 题意翻译 有一个\(1\sim n\)的排列,会进行\(m\)次操作,操作为交换\(a,b\).每次操作都有\ ...
- Codeforces 258D Little Elephant and Broken Sorting (看题解) 概率dp
Little Elephant and Broken Sorting 怎么感觉这个状态好难想到啊.. dp[ i ][ j ]表示第 i 个数字比第 j 个数字大的概率.转移好像比较显然. #incl ...
- CF 258 D. Little Elephant and Broken Sorting
D. Little Elephant and Broken Sorting 链接 题意: 长度为n的序列,m次操作,每次交换两个位置,每次操作的概率为$\frac{1}{2}$,求m此操作后逆序对的期 ...
- CodeForces - 258D Little Elephant and Broken Sorting
Discription The Little Elephant loves permutations of integers from 1 to n very much. But most of al ...
- CodeForces - 258D:Little Elephant and Broken Sorting(概率DP)
题意:长度为n的排列,m次交换xi, yi,每个交换x,y有50%的概率不发生,问逆序数的期望 .n, m <= 1000 思路:我们只用维护大小关系,dp[i][j]表示位置i的数比位置j的 ...
- [ZJOI2012]波浪弱化版(带技巧的DP)
题面 \(solution:\) 这道确实挺难的,情况特别多,而且考场上都没想到如何设置状态.感觉怎么设状态不能很好的表示当前情况并转移,考后发现是对全排列的构造方式不熟而导致的,而这一题的状态也是根 ...
- CF293B 方格(带技巧的搜索)
solution: 首先我们根据一条路径上不能有两个相同颜色的格子可以得出: 对于两个格子 \((x_1 , y_1 )\) 和 \((x_2 , y_2 )\) 必须满足: \(x_1<x_2 ...
- HDU 6351 (带技巧的暴力)
题意:给定一个数,和一个最多交换次数k,问在不超过k次操作的情况,问可以得到的最大值和最小值是多少? 个人解题的艰辛路程 , 开始是想到了暴力枚举的可能 , 打出来发现在判断枚举的数组与原来数组交换了 ...
随机推荐
- 谷歌算法研究员:我为什么钟爱PyTorch?
老铁们好!我是一名前谷歌的算法研究员,处理深度学习相关项目已有三年经验,接下来会在平台上给大家分享一些深度学习,计算机视觉和统计机器学习的心得体会,当然了内推简历一定是收的.这篇文章,不想说太多学术的 ...
- Linux内核第一节
存储程序计算机工作模型 存储程序计算机——冯诺依曼体系结构 IP:寄存器,总是指向内存的代码段.IP(16位) 32位(EIP) 64位(RIP). 内存:保存数据和指令. CPU:CPU从IP指向的 ...
- ibmv7000查看序列号
ssh后 命令:lsenclosure 有以下数据 id status type managed IO_group_id IO_group_name product_MTM serial ...
- Threadlocal 传递参数(百度二面)
去百度面试,二面的时候 面试官问 如果我想跟踪一个请求,从接收请求,处理到返回的整个流程,有没有好的办法,后来面试官说了 Threadlocal 可以做到传递参数. 这是ThreadLocal的一个功 ...
- kafka 数据一致性-leader,follower机制与zookeeper的区别;
我写了另一篇zookeeper选举机制的,可以参考:zookeeper 负载均衡 核心机制 包含ZAB协议(滴滴,阿里面试) 一.zookeeper 与kafka保持数据一致性的不同点: (1)zoo ...
- spring 事务-support 有事务得开启就参加 没有就不参加
spring 事务-support 有事务得开启就参加 没有就不参加
- MT【111】画图估计
评:此类方程是超越方程,一般情况下无法解出具体的解,常见手段:1.画图 2.猜根.此处可以取特殊值a=2.5,b=3.5,容易知道此时$x=2.5\in(2,3)$
- 利用powerful number求积性函数前缀和
好久没更博客了,先水一篇再说.其实这个做法应该算是杜教筛的一个拓展. powerful number的定义是每个质因子次数都 $\geq 2$ 的数.首先,$\leq n$ 的powerful num ...
- 【CF912E】Prime Game(meet in the middle)
[CF912E]Prime Game(meet in the middle) 题面 CF 懒得翻译了. 题解 一眼题. \(meet\ in\ the\ middle\)分别爆算所有可行的两组质数,然 ...
- Java 8 中 Date与LocalDateTime、LocalDate、LocalTime互转
Java 8中 java.util.Date 类新增了两个方法,分别是from(Instant instant)和toInstant()方法 // Obtains an instance of Dat ...