cf808E(三分)
题目链接:http://codeforces.com/problemset/problem/808/E
题意:给出n个体积为wi, 价值为ci的物品,背包容量为m,求能容纳的最大物品价值,其中 1<=wi<=3;
思路:看到题目首先想到了atcoder的一道题http://www.cnblogs.com/geloutingyu/p/6789985.html
然而这里的 n 为 1e5,直接贪心枚举肯定是不行的.可以考虑O(nlogn)的算法...
这里可以先按照价值从大到小枚举体积为3的物品,用剩余的容量去装体积为1, 和 2 的物品使剩余空间取得最大值,所有枚举情况中的最大值即为答案;
现在问题转化成了在O(longn)的时间复杂度内求出剩余空间能容纳的1,和2物品最大价值,以物品2的数目为 x 轴,能容纳的最大价值为 y 轴,
将其描点再连成光滑曲线后是一条单峰抛物线 / 单峰拋物线的一侧 ;可以做个简易的证明,对于已经降序排列的物品1, 物品2 显然其单位体积的
价值是非递增的,用 i 表示当前选了 i 个物品2,area2( i )为前 i 个物品平均单位体积的价值,显然 area2( i )是随 i 非递增的,物品1同理,并且这里的容量是固定的,
所以其在以物品2的数目为x轴,最大价值为 y 轴的直角坐标系中的图形为:
1,若物品1, 2的体积和不大于背包剩余空间,则其为单峰函数的左侧;
2,对于物品1, 2的体积和大于背包剩余空间,有:
a,若area2(index2) > area1(1),其中index2为物品2的数目,则其为单峰函数左侧;
b,若area2(1) < area1(index1),其中index1为物品1的数目,则其为单峰函数右侧;
c,其他情况则存在峰;
对于单峰函数直接三分一下物品2的数目即可找峰值,注意这里可能会存在单调的情况(为单峰函数的一侧),所以还要判断一下边界;
ps:我试了下先枚举物品3再三分物品1的数目wa了,百思不得其解,望路过的大佬指教~
代码:
#include <iostream>
#include <stdio.h>
#include <algorithm>
#define ll long long
using namespace std; const int MAXN = 3e5+;
ll a[MAXN], b[MAXN], c[MAXN];
ll va[MAXN], vb[MAXN], vc[MAXN];
int n, m, indxa=, indxb=, indxc=; bool cmp(ll a, ll b){
return a > b;
} void get_v(void){
for(int i=; i<=m; i++){
va[i] = va[i-] + a[i];
}
for(int i=; i*<=m; i++){
vb[i<<] = vb[(i-)<<] + b[i];
vb[(i<<)-] = vb[(i-)<<];
}
for(int i=; i*<=m; i++){
vc[i*] = vc[(i-)*] + c[i];
}
} ll f(int x, int w){
if(x* > w) x=w>>;
return vb[x*] + va[w-x*];
} ll find(int w){//三分体积为2的数目
if(w <= ) return ;
int l=, r=w, rmid=w, lmid=;
while(l < r-){
lmid = l+(r-l)/;
rmid = r-(r-l)/;
if(f(lmid, w) > f(rmid, w)) r = rmid;
else l = lmid;
}
return max(max(max(max(f(l, w), f(r, w)), f(lmid, w)), f(rmid, w)), f(, w));//***注意这里的边界条件
} int main(void){
ll ans=;
scanf("%d%d", &n, &m);
for(int i=; i<n; i++){
int x, y;
scanf("%d%d", &x, &y);
if(x == ) a[indxa++] = y;
else if(x == ) b[indxb++] = y;
else c[indxc++] = y;
}
sort(a+, a+indxa, cmp);
sort(b+, b+indxb, cmp);
sort(c+, c+indxc, cmp);
get_v();
for(int i=; i*<=m; i++){//枚举体积为3的数目
ll cnt = vc[i*];
cnt += find(m-i*);
ans = ans > cnt ? ans : cnt;
}
printf("%lld\n", ans);
return ;
}
cf808E(三分)的更多相关文章
- hdu3714 三分找最值
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- BZOJ 1857 传送带 (三分套三分)
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...
- hdu 4717(三分求极值)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 思路:三分时间求极小值. #include <iostream> #include ...
- HDU2438 数学+三分
Turn the corner Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 三分之一的程序猿之社交类app踩过的那些坑
三分之一的程序猿之社交类app踩过的那些坑 万众创新,全民创业.哪怕去年陌生人社交不管融资与否都倒闭了不知道多少家,但是依然有很多陌生人社交应用层出不穷的冒出来.各种脑洞大开,让人拍案叫起. 下面我们 ...
- 基于jPlayer的三分屏制作
三分屏,这里的三分屏只是在一个播放器里同时播放三个视频,但是要求只有一个控制面板同时控制它们,要求它们共享一个时间轨道.这次只是简单的模拟了一下功能,并没有深入的研究. 首先,需要下载jPlayer, ...
- 【BZOJ-1857】传送带 三分套三分
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1077 Solved: 575[Submit][Status][ ...
- ACM : HDU 2899 Strange fuction 解题报告 -二分、三分
Strange fuction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- bzoj1857: [Scoi2010]传送带--三分套三分
三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...
随机推荐
- Android进程的生命周期
Android系统想要永久的保留一个应用进程差点儿是不可能的.所以系统就须要不断的释放老的或者不太重要的进程以便腾出足够的内存空间来执行新的或者更重要的进程,那么系统怎样决定哪个进程应该保留哪个应该杀 ...
- MySQL 中事务的实现
在关系型数据库中,事务的重要性不言而喻,只要对数据库稍有了解的人都知道事务具有 ACID 四个基本属性,而我们不知道的可能就是数据库是如何实现这四个属性的: 在这篇文章中,我们将对事务的实现进行分析, ...
- 20145239杜文超 《Java程序设计》实验二 Java面向对象程序设计实验报告
20145239 <Java程序设计>实验二 Java面向对象程序设计实验报告 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S. ...
- GPIO设备虚拟文件结点的创建【转】
本文转载自:http://blog.csdn.net/dwyane_zhang/article/details/6742066 所谓GPIO设备虚拟文件结点,就是方便用户在应用程序直接操纵GPIO的值 ...
- Dubbo之消费者
在写 dubbbo调用时候 <dubbo:reference 不能有空格! 项目结构: pom: <project xmlns="http://maven.apache.org ...
- python绘制圆和椭圆
源自:https://blog.csdn.net/petermsh/article/details/78458585 1. 调用包函数绘制圆形Circle和椭圆Ellipse from matplot ...
- python学习笔记:第七天(函数)
Python3 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率. 与C一样,Python提供了许多内建函数,比如print().同 ...
- [原创]Java在线编辑word文档调用PageOffice实现并发控制
1.功能介绍 PageOffice的并发控制功能用来解决多个用户在线编辑同一篇文档可能造成的互相覆盖修改结果的技术难题. B/S架构下用户访问都是并发的,也就是说经常会出现同时N个用户对一个服务器页面 ...
- mongdb启动问题
问题:Detected unclean shutdown - /data/db/mongod.lock is not empty. old lock file:/data/db/mongod.lock ...
- boobmarklet
bookmarklet ,一般都称呼为小书签.它是一段 JavaScript 脚本,一般网络上的小书签都是一个链接,它的安装非常简单,只需要把链接拖到你的收藏夹里. 利用它,可以实现一些页面优化.性能 ...