题目

最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地。据了解,

这块土地是一块矩形的区域,可以纵横划分为N×M块小区域。GDOI要求将这些区域分为商业区和工业区来开发。根

据不同的地形环境,每块小区域建造商业区和工业区能取得不同的经济价值。更具体点,对于第i行第j列的区域,

建造商业区将得到Aij收益,建造工业区将得到Bij收益。另外不同的区域连在一起可以得到额外的收益,即如果区

域(I,j)相邻(相邻是指两个格子有公共边)有K块(显然K不超过4)类型不同于(I,j)的区域,则这块区域能增加k

×Cij收益。经过Tiger.S教授的勘察,收益矩阵A,B,C都已经知道了。你能帮GDOI求出一个收益最大的方案么?

输入格式

输入第一行为两个整数,分别为正整数N和M,分别表示区域的行数和列数;

第2到N+1列,每行M个整数,表示商业区收益矩阵A;

第N+2到2N+1列,每行M个整数,表示工业区收益矩阵B;

第2N+2到3N+1行,每行M个整数,表示相邻额外收益矩阵C。

任何数字不超过1000”的限制

输出格式

输出只有一行,包含一个整数,为最大收益值。

输入样例

3 3

1 2 3

4 5 6

7 8 9

9 8 7

6 5 4

3 2 1

1 1 1

1 3 1

1 1 1

输出样例

81

提示

【数据规模】

对于100%的数据有N,M≤100

题解

类似BZOJ2127happiness

上一次似乎没有写博,,

一个经典的最小割模型,每个人有两个选择,每个选择有不同收益,当一些人选择相同时会有额外的收益,求最大收益

用一个这样的图:

这个图有两种割法

设二人同选\(A\)的额外收益为\(w_a\),同选\(B\)为\(w_b\)

①当二者选择不同时,除了没选的收益外,会付出额外代价\(w_a + w_b\)

对应的图中代价,要割掉不同侧的边,以及中间的一条边

\[x_1 + x_3 + x_6
\]

\[x_2 + x_4 + x_5
\]

②选择相同时,除了

对应图中,割掉一侧的边即可

\[x_1 + x_5
\]

\[x_2 + x_6
\]

那么有:

\[x_1 + x_3 + x_6 = w_a + w_b
\]

\[x_2 + x_4 + x_5 = w_a + w_b
\]

\[x_1 + x_5 = w_b
\]

\[x_2 + x_6 = w_a
\]

似乎有多解,我们不妨设:

\[x_1 = x_5
\]

\[x_2 = x_6
\]

即可得到一组比较特殊的解:

\[x_1 = x_5 = \frac{w_b}{2} \qquad x_2 = x_6 = \frac{w_a}{2} \qquad x_3 = x_4 = \frac{w_a + w_b}{2}
\]

那么最小割即为在提前拥有所有收益后必须付出的最小代价了

具体建图中,我们通常将边权乘\(2\)变为整数

回到这题,建图就很裸了

不过这题是不同产生收益,我们二分染色一下,然后对于其中一种颜色的点\(AB\)交换即可

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 10005,maxm = 200005,N = 105,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int A[N][N],B[N][N],C[N][N],id[N][N],X[4] = {0,0,-1,1},Y[4] = {-1,1,0,0};
int n,m,S,T;
int h[maxn],ne = 2;
struct EDGE{int to,nxt,f;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0}; h[v] = ne++;
}
int d[maxn],vis[maxn],used[maxn],cur[maxn],now;
int q[maxn],head,tail;
inline bool bfs(){
q[head = tail = 1] = S; vis[S] = now; d[S] = 0;
int u;
while (head <= tail){
u = q[head++];
Redge(u) if (ed[k].f && vis[to = ed[k].to] != now){
d[to] = d[u] + 1; vis[to] = now;
if (to == T) return true;
q[++tail] = to;
}
}
return vis[T] == now;
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int flow = 0,f,to;
if (used[u] != now) cur[u] = h[u],used[u] = now;
for (int& k = cur[u]; k; k = ed[k].nxt)
if (vis[to = ed[k].to] == now && d[to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0; now = 1;
while (bfs()){
flow += dfs(S,INF);
now++;
}
return flow;
}
int main(){
n = read(); m = read(); S = 0; T = m * n + 1;
int ans = 0;
REP(i,n) REP(j,m) A[i][j] = read(),ans += A[i][j],A[i][j] <<= 1;
REP(i,n) REP(j,m) B[i][j] = read(),ans += B[i][j],B[i][j] <<= 1;
REP(i,n) REP(j,m) C[i][j] = read();
REP(i,n) REP(j,m) id[i][j] = (i - 1) * m + j;
REP(i,n) REP(j,m){
int x,y,tmp;
if ((i & 1) ^ (j & 1)){
for (int k = 0; k < 4; k++){
x = i + X[k];
y = j + Y[k];
if (x < 1 || y < 1 || x > n || y > m) continue;
tmp = C[i][j] + C[x][y]; ans += tmp << 1;
A[i][j] += tmp; B[i][j] += tmp;
A[x][y] += tmp; B[x][y] += tmp;
build(id[i][j],id[x][y],tmp << 1);
build(id[x][y],id[i][j],tmp << 1);
}
}
}
REP(i,n) REP(j,m){
if ((i & 1) ^ (j & 1)){
build(S,id[i][j],A[i][j]);
build(id[i][j],T,B[i][j]);
}
else {
build(S,id[i][j],B[i][j]);
build(id[i][j],T,A[i][j]);
}
}
printf("%d\n",ans - (maxflow() >> 1));
return 0;
}

BZOJ2132 圈地计划 【最小割】的更多相关文章

  1. 【BZOJ2132】圈地计划 最小割

    [BZOJ2132]圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地. ...

  2. [BZOJ]2132: 圈地计划 最小割

    圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一 ...

  3. BZOJ 2131 圈地计划(最小割+黑白染色)

    类似于happiness的一道题,容易想到最小割的做法. 但是不同的是那一道题是相邻的如果相同则有收益,这题是相邻的不同才有收益. 转化到建图上面时,会发现,两个相邻的点连的边容量会是负数.. 有一种 ...

  4. bzoj2132圈地计划

    bzoj2132圈地计划 题意: 一块土地可以纵横划分为N×M块小区域.于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.而如果区域(i,j)相邻(相邻是指两个格子有公共边 ...

  5. bzoj2132: 圈地计划(无比强大的最小割)

    2132: 圈地计划 题目:传送门 简要题意: 给出一个矩阵,一共n*m个点,并给出三个收益矩阵.A矩阵表示这个点建A的可取收益,B矩阵表示这个点建B的可取收益,C矩阵表示如果相邻(有且仅有一条公共边 ...

  6. bzoj2132: 圈地计划

    要分成两坨对吧.. 所以显然最小割 但是不兹辞啊.. 最小割是最小的啊 求最大费用怎么玩啊 那咱们就把所有费用都加起来,减掉一个最小的呗 但是两个属于不同集合的点贡献的价值是负的啊 网络流怎么跑负的啊 ...

  7. bzoj2132: 圈地计划(最小割)

    传送门 看来以后见到矩形就要黑白染色冷静一下了…… 首先,如果它的要求时候相邻的选择相同,那么就是和这一题一样了->这里 然后考虑不同的要怎么做 那就把矩形黑白染色一下吧 然后令其中一种颜色的A ...

  8. 【BZOJ2132】圈地计划(最小割)

    [BZOJ2132]圈地计划(最小割) 题面 BZOJ 题解 对我而言,不可做!!! 所以我膜烂了ZSY大佬 他的博客写了怎么做... 这,,...太强啦!! 完全想不到黑白染色之后反着连边 然后强行 ...

  9. 【bzoj2132】圈地计划 网络流最小割

    题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划 ...

随机推荐

  1. 2017.12.14 Java实现-----图书管理系统

    通过对图书的增删改查操作 用数组实现 Manager类 package demo55; import java.util.*; public class Manager { Scanner sc = ...

  2. 分布式版本控制系统git

    最近看到这篇文章,简洁易懂,特摘抄至https://www.cnblogs.com/bgwhite/p/9403233.html 供大家提供参考. git可以说是世界上最先进的版本控制系统,大多语句的 ...

  3. python操作文件目录

    # 查看当前目录的绝对路径: >>> os.path.abspath('.') /Users/NaCl/Documents/GitHub #同样的道理,要拆分路径时,也不要直接去拆字 ...

  4. 最近面试前端岗位,汇总了一下前端面试题(JS+CSS)

    JavaScript 运行机制 1. 单线程(用途决定,需要与用户互动以及操作DOM) 2. 分同步任务(主线程)与异步任务(任务队列),只有任务队列通知主线程某个任务可以执行了,该 任务才会进入主线 ...

  5. Python基础2-Python中文乱码(转)

    转自:https://blog.csdn.net/apache0554/article/details/53889253 前言:中文编码问题一直是程序员头疼的问题,而Python2中的字符编码足矣令新 ...

  6. MSBuild常用方法

    打包后把nuget包复制到指定的目录 <Target Name="CopyPackage" AfterTargets="Pack"> <Cop ...

  7. css清除浮动,清除子节点margin溢出问题

    清除浮动 .clearfix:after{ content:”.”; display:block; height:0; clear:both; visibility:hidden; } 清除margi ...

  8. ob缓存的基本使用

    在页面 加载的时候 如果 图片 很多 很大 会造成页面的阻塞降低用户体验 我们在点击页面的时候可以使用OB缓存 整个页面, 当用户点击的时候直接请求的是我们预先准备好的html页面 .也降低了我们数据 ...

  9. python3 练习题100例 (十)

    题目十:判断101-200之间有多少个素数,并输出所有素数. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 题目十 ...

  10. 04vim的使用

    linux常用命令 workon 查看已经安装的虚拟环境 deactivate 退出虚拟环境 whoami 查看用户 sudo bash install.sh 添加权限 pwd 查看在那个路径下 cd ...