[暑假集训--数论]poj2657 Comfort
Description
Player starts on a field marked with number 1. His goal is to reach a given field marked with number Z. The only way of moving is a clockwise jump of length K. The only restriction is that the fields the player may jump to should not contain any obstacle.
For example, if N = 13, K = 3 and Z = 9, the player can jump across the fields 1, 4, 7, 10, 13, 3, 6 and 9, reaching his goal under condition that none of these fields is occupied by an obstacle.
Your task is to write a program that finds the smallest possible number K.
Input
Next line consists of M different integers that represent marks of fields having an obstacle. It is confirmed that fields marked 1 and Z do not contain an obstacle.
Output
Sample Input
9 7 2
2 3
Sample Output
3
问在长度为n的环上走,每一次走k步,最后要走到z。有m个点是不可走的,问最小的k是多少
用exgcd可以解方程ax==b(mod c),把这个式子写成ax-cy==b,exgcd解出ax+cy==gcd(a,c),然后调一下系数,就能知道最小的x。
如果0到z-1的步数大于了0到某一个障碍位置的步数,说明先到障碍位置,就不行
#include<cstdio>
#include<iostream>
#define LL long long
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,z,m;
int b[];
inline int exgcd(int a,int b,int &x,int &y)
{
if (!b){x=;y=;return a;}
int gcd=exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
return gcd;
}
inline int calc(int a,int b,int c)//a*x==b(mod c)
{
int x=,y=;
int tt=exgcd(a,c,x,y);
if (b%tt!=)return -;x=(x*b/tt)%c;
int ss=c/tt;
x=(x%ss+ss)%ss;
return x;
}
int main()
{
while (~scanf("%d%d%d",&n,&z,&m))
{
z--;
for(int i=;i<=m;i++)
b[i]=read()-;
for (int i=;i<=z;i++)
{
bool ok=;
int step=calc(i,z,n);
if (step==-)continue;
for (int j=;j<=m;j++)
{
int now=calc(i,b[j],n);
if (now==-||now>step)continue;
ok=;break;
}
if (ok){printf("%d\n",i);break;}
}
}
}
poj 2657
[暑假集训--数论]poj2657 Comfort的更多相关文章
- [暑假集训--数论]hdu2136 Largest prime factor
Everybody knows any number can be combined by the prime number. Now, your task is telling me what po ...
- [暑假集训--数论]hdu1019 Least Common Multiple
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...
- [暑假集训--数论]poj2115 C Looooops
A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...
- [暑假集训--数论]poj1365 Prime Land
Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...
- [暑假集训--数论]poj2034 Anti-prime Sequences
Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement ...
- [暑假集训--数论]poj1595 Prime Cuts
A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In ...
- [暑假集训--数论]poj2262 Goldbach's Conjecture
In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...
- [暑假集训--数论]poj2909 Goldbach's Conjecture
For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 ...
- [暑假集训--数论]poj3518 Prime Gap
The sequence of n − 1 consecutive composite numbers (positive integers that are not prime and not eq ...
随机推荐
- 2018.4.15 Mac系统下如何使用StartUml画好需求分析的类图 (同样适用于windows)
Mac如何使用StartUml (同样适用于windows) 左侧边栏的英文含义及其用法 关联(Association) [关联关系]:是一种拥有的关系,它使一个类知道另一个类的属性和方法:如:老师与 ...
- sum特殊用法
在python中,list可以存储False和True a = [False] python的sum除了可以加数字,还可以计算列表中False,True的个数,默认是计算False个数 >> ...
- 代码方式使用AutoLayout (NSLayoutConstraint + Masonry)
随着iPhone6/6+设备的上市,如何让手头上的APP适配多种机型多种屏幕尺寸变得尤为迫切和必要.(包括:iPhone4/4s,iPhone5/5s,iPhone6/6s,iPhone 6p/6ps ...
- 主题模型LDA及在推荐系统中的应用
1 关于主题模型 使用LDA做推荐已经有一段时间了,LDA的推导过程反复看过很多遍,今天有点理顺的感觉,就先写一版. 隐含狄利克雷分布简称LDA(latent dirichlet allocation ...
- ubuntu16.04安装 java JDK8
安装openjdk1.更新软件包列表: sudo apt-get update 2.安装openjdk-8-jdk: sudo apt-get install openjdk-8-jdk 3.查看ja ...
- Pyhon从入门到致命
第一章 基础 1.python2和python3的区别 2.数据类型 2.1 int 整型 2.2 str 字符串不可变类型 2.3 bool 布尔类型 2.4 list 列表 2.5 tuple 元 ...
- 采用Atlas+Keepalived实现MySQL读写分离、读负载均衡
========================================================================================== 一.基础介绍 == ...
- 解决oh-my-zsh卡顿问题
git config --global oh-my-zsh.hide-status 1
- Ubuntu 15.04 安装配置 Qt + SQLite3
序 最近需要在Ubuntu下使用Qt开发项目,选择简单小巧的SQLite数据库,现将安装配置以及简单操作记录如下,以便日后查阅. 安装Qt CMake和Qt Creator是Linux下开发C++程序 ...
- MySQL安装与配置介绍
MySQl介绍 官方站点:http://www.mysql.com/ MySQL是一个开放源码的小型关联式数据库管理系统.目前MySQL被广泛地应用在Internet上的中小型网站中.由于其体积小.速 ...