题目链接

  这个……学了一条定理

  最小路径覆盖=原图总点数-对应二分图最大匹配数

  这个对应二分图……是什么呢?

  就是这样

  

  这是原图

  

  这是拆点之后对应的二分图。

  

  然后咱们的目标就是从这张图上跑出个最大流来,然后用原图的总点数减去就是答案。

  至于记录路径……我发现有一个规律是可以在Dinic跑DFS的时候记。

  别的我不知道了。因为我只会Dinic。

  代码如下。

  

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define maxn 3000
#define maxm 60000
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} inline int count(int i){ return i&?i+:i-; } struct Edge{
int next,to,val;
}edge[maxm*];
int head[maxn*],num;
inline void addedge(int from,int to,int val){
edge[++num]=(Edge){head[from],to,val};
head[from]=num;
}
inline void add(int from,int to,int val){
addedge(from,to,val);
addedge(to,from,);
} bool vis[maxn];
int dfn[maxn];
int list[maxn*];
int Start,End;
int road[maxn*];
int n,m;
bool flag; bool bfs(){
memset(vis,,sizeof(vis));
queue<int> q; dfn[Start]=; vis[Start]=; q.push(Start);
while(!q.empty()){
int from=q.front(); q.pop();
for(int i=head[from];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||edge[i].val<=) continue;
vis[to]=;
dfn[to]=dfn[from]+;
q.push(to);
}
}
return vis[End];
} int dfs(int x,int val){
//printf("%d %d\n",x,val);
if(val==||x==End) return val;
vis[x]=; int flow=;
for(int &i=list[x];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||dfn[to]!=dfn[x]+||edge[i].val<=) continue;
int now=dfs(to,min(val,edge[i].val));
val-=now; edge[i].val-=now; flow+=now; edge[count(i)].val+=now;
if(val<=){
road[x]=to;
break;
}
}
if(flow!=val) dfn[x]=-;
return flow;
} int maxflow(){
int ans=;
while(bfs()){
memset(vis,,sizeof(vis));
for(int i=Start;i<=End;++i) list[i]=head[i];
int now=dfs(Start,0x7fffffff);
if(!now) break;
ans+=now;
}
return ans;
} int main(){
n=read(),m=read();End=n*+;
for(int i=;i<=n;++i){
add(Start,i,);
add(i+n,End,);
}
for(int i=;i<=m;++i){
int from=read(),to=read();
add(from,to+n,);
}
int ans=maxflow();
memset(vis,,sizeof(vis));
for(int i=;i<=n;++i){
if(road[i]==) continue;
int now=i;
while(now!=End&&now){
printf("%d ",now>n?now-=n:now);
int x=road[now]; road[now]=;
now=x;
}
printf("\n");
}
printf("%d",n-ans);
return ;
}

【Luogu】P2764最小路径覆盖(拆点求最大匹配)的更多相关文章

  1. Luogu P2764 最小路径覆盖问题(二分图匹配)

    P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...

  2. luogu P2764 最小路径覆盖问题

    题目描述 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任 ...

  3. LUOGU P2764 最小路径覆盖问题 (最小路径点覆盖)

    解题思路 有向图最小路径点覆盖问题,有这样的结论就是有向图最小路径点覆盖等于n-拆点二分图中最大匹配.具体怎么证明不太知道..输出方案时找到所有左部未匹配的点一直走$match​$就行了. #incl ...

  4. 【luogu P2764 最小路径覆盖问题】 模板

    题目链接:https://www.luogu.org/problemnew/show/P2764 把每个点在左边建一遍右边建一遍,再加上源点汇点,跑最大流,n-最大流就是答案. #include &l ...

  5. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  6. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  7. P2764 最小路径覆盖问题 网络流重温

    P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...

  8. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  9. 网络流二十四题之P2764 最小路径覆盖问题

    题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...

随机推荐

  1. 并发教程--JAVA5中 计数信号量(Counting Semaphore)例子

    并发教程--JAVA5中 计数信号量(COUNTING SEMAPHORE)例子 本文由 TonySpark 翻译自 Javarevisited.转载请参见文章末尾的要求. Java中的计数信息量(C ...

  2. 2018.4.13 用java配置/生成Xml文件 结合IO流知识点

    自己创建本地文件Hello.txt 里面有数据 小明/23/增城/广东 小花/12/浦东/上海 StudentManager.java package com.lanqiao.dmeo7; impor ...

  3. 主成分分析法(PCA)答疑

    问:为什么要去均值? 1.我认为归一化的表述并不太准确,按统计的一般说法,叫标准化.数据的标准化过程是减去均值并除以标准差.而归一化仅包含除以标准差的意思或者类似做法.2.做标准化的原因是:减去均值等 ...

  4. JAVA 修改环境变量不重启电脑生效方法

     1. 在安装JDK1.6(高版本)时(本机先安装jdk1.6再安装的jdk1.5),自动将java.exe.javaw.exe.javaws.exe三个可执行文件复制到了C:\Windows\Sys ...

  5. PHP计算两个日期相差的年月日时分秒

    $start_time = '2017-09-06 15:12:20'; $end_time = '2018-09-08 10:20:45'; get_time($start_time,$end_ti ...

  6. C#基础-数组-ArrayList

    数组ArrayList using System.Collections; //表示引入集合的命名空间 数组ArrayList容量本身是不固定的,根据存储的数据动态变化 // 声明一个ArrayLis ...

  7. 如何用纯 CSS 创作一个方块旋转动画

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/gjgyWm 可交互视频 ...

  8. OOP之单例模式

  9. 请问batch_normalization做了normalization后为什么要变回来?

    请问batch_normalization做了normalization后为什么要变回来? 请问batch_normalization做了normalization后为什么要变回来? - 莫驚蟄的回答 ...

  10. 解决oh-my-zsh卡顿问题

    git config --global oh-my-zsh.hide-status 1