【Luogu】P2764最小路径覆盖(拆点求最大匹配)
这个……学了一条定理
最小路径覆盖=原图总点数-对应二分图最大匹配数
这个对应二分图……是什么呢?
就是这样

这是原图

这是拆点之后对应的二分图。

然后咱们的目标就是从这张图上跑出个最大流来,然后用原图的总点数减去就是答案。
至于记录路径……我发现有一个规律是可以在Dinic跑DFS的时候记。
别的我不知道了。因为我只会Dinic。
代码如下。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define maxn 3000
#define maxm 60000
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} inline int count(int i){ return i&?i+:i-; } struct Edge{
int next,to,val;
}edge[maxm*];
int head[maxn*],num;
inline void addedge(int from,int to,int val){
edge[++num]=(Edge){head[from],to,val};
head[from]=num;
}
inline void add(int from,int to,int val){
addedge(from,to,val);
addedge(to,from,);
} bool vis[maxn];
int dfn[maxn];
int list[maxn*];
int Start,End;
int road[maxn*];
int n,m;
bool flag; bool bfs(){
memset(vis,,sizeof(vis));
queue<int> q; dfn[Start]=; vis[Start]=; q.push(Start);
while(!q.empty()){
int from=q.front(); q.pop();
for(int i=head[from];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||edge[i].val<=) continue;
vis[to]=;
dfn[to]=dfn[from]+;
q.push(to);
}
}
return vis[End];
} int dfs(int x,int val){
//printf("%d %d\n",x,val);
if(val==||x==End) return val;
vis[x]=; int flow=;
for(int &i=list[x];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||dfn[to]!=dfn[x]+||edge[i].val<=) continue;
int now=dfs(to,min(val,edge[i].val));
val-=now; edge[i].val-=now; flow+=now; edge[count(i)].val+=now;
if(val<=){
road[x]=to;
break;
}
}
if(flow!=val) dfn[x]=-;
return flow;
} int maxflow(){
int ans=;
while(bfs()){
memset(vis,,sizeof(vis));
for(int i=Start;i<=End;++i) list[i]=head[i];
int now=dfs(Start,0x7fffffff);
if(!now) break;
ans+=now;
}
return ans;
} int main(){
n=read(),m=read();End=n*+;
for(int i=;i<=n;++i){
add(Start,i,);
add(i+n,End,);
}
for(int i=;i<=m;++i){
int from=read(),to=read();
add(from,to+n,);
}
int ans=maxflow();
memset(vis,,sizeof(vis));
for(int i=;i<=n;++i){
if(road[i]==) continue;
int now=i;
while(now!=End&&now){
printf("%d ",now>n?now-=n:now);
int x=road[now]; road[now]=;
now=x;
}
printf("\n");
}
printf("%d",n-ans);
return ;
}
【Luogu】P2764最小路径覆盖(拆点求最大匹配)的更多相关文章
- Luogu P2764 最小路径覆盖问题(二分图匹配)
P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...
- luogu P2764 最小路径覆盖问题
题目描述 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任 ...
- LUOGU P2764 最小路径覆盖问题 (最小路径点覆盖)
解题思路 有向图最小路径点覆盖问题,有这样的结论就是有向图最小路径点覆盖等于n-拆点二分图中最大匹配.具体怎么证明不太知道..输出方案时找到所有左部未匹配的点一直走$match$就行了. #incl ...
- 【luogu P2764 最小路径覆盖问题】 模板
题目链接:https://www.luogu.org/problemnew/show/P2764 把每个点在左边建一遍右边建一遍,再加上源点汇点,跑最大流,n-最大流就是答案. #include &l ...
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)
Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...
- P2764 最小路径覆盖问题 网络流重温
P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
- 网络流二十四题之P2764 最小路径覆盖问题
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...
随机推荐
- HDU - 5491 The Next 2015 ACM/ICPC Asia Regional Hefei Online
从D+1开始,对于一个数x,区间[x,x+lowbit(x))内的数字的二进制位上1的数量整体来说是单调不减的,因此可快速得出1在这个区间的取值范围. 每次判断一下有没有和[s1,s2]有没有交集,一 ...
- [dp uestc oj] G - 邱老师玩游戏
G - 邱老师玩游戏 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submi ...
- 数据库要素 ER
数据库的要素即为ER: 即为表和关系. 再往下即为字段.记录. 往上即为数据操作.管理: 包含多表操作: 在往上为事务. 再往上为大数据.高并发.
- k8s1.13.0二进制部署-Dashboard和coredns(五)
部署UI 下载yaml文件https://github.com/kubernetes/kubernetes [root@k8s-master1 ~]# git clone https://github ...
- ajax的dataType有哪些类型?
ajax的dataType有哪些类型? 格式为:dataType:"xxx", •"xml": 返回 XML 文档,可用 jQuery 处理 •"ht ...
- java基础—object类
一.Object类介绍
- 01_8_session
01_8_session 1. session总结 1.1服务器的一块内存(存key-value) 1.2和客户端窗口对应(子窗口)(独一无二) 1.3客户端和服务器有对应的SessionID 1.4 ...
- Docker 在容器中部署静态网站
Docker 在容器中部署静态网站 在容器中部署静态网站 设置容器的端口映射 run -P``--publish-all=true|false:容器暴露的所有端口进行映射 -p``--publish= ...
- 变量赋值理解--Pyton中让两个值互换的方法
#Pyton中让两个值互换的方法 #方法一:可以理解为相当于是同时赋值 a = 5 b = 4 a,b = b,a print(a,b) #方法二:可以理解为拿箱子过程 c = 10 d = 20 e ...
- CodeForces 392C Yet Another Number Sequence 矩阵快速幂
题意: \(F_n\)为斐波那契数列,\(F_1=1,F_2=2\). 给定一个\(k\),定义数列\(A_i=F_i \cdot i^k\). 求\(A_1+A_2+ \cdots + A_n\). ...