题目链接

  这个……学了一条定理

  最小路径覆盖=原图总点数-对应二分图最大匹配数

  这个对应二分图……是什么呢?

  就是这样

  

  这是原图

  

  这是拆点之后对应的二分图。

  

  然后咱们的目标就是从这张图上跑出个最大流来,然后用原图的总点数减去就是答案。

  至于记录路径……我发现有一个规律是可以在Dinic跑DFS的时候记。

  别的我不知道了。因为我只会Dinic。

  代码如下。

  

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<queue>
#include<cstdlib>
#define maxn 3000
#define maxm 60000
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} inline int count(int i){ return i&?i+:i-; } struct Edge{
int next,to,val;
}edge[maxm*];
int head[maxn*],num;
inline void addedge(int from,int to,int val){
edge[++num]=(Edge){head[from],to,val};
head[from]=num;
}
inline void add(int from,int to,int val){
addedge(from,to,val);
addedge(to,from,);
} bool vis[maxn];
int dfn[maxn];
int list[maxn*];
int Start,End;
int road[maxn*];
int n,m;
bool flag; bool bfs(){
memset(vis,,sizeof(vis));
queue<int> q; dfn[Start]=; vis[Start]=; q.push(Start);
while(!q.empty()){
int from=q.front(); q.pop();
for(int i=head[from];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||edge[i].val<=) continue;
vis[to]=;
dfn[to]=dfn[from]+;
q.push(to);
}
}
return vis[End];
} int dfs(int x,int val){
//printf("%d %d\n",x,val);
if(val==||x==End) return val;
vis[x]=; int flow=;
for(int &i=list[x];i;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||dfn[to]!=dfn[x]+||edge[i].val<=) continue;
int now=dfs(to,min(val,edge[i].val));
val-=now; edge[i].val-=now; flow+=now; edge[count(i)].val+=now;
if(val<=){
road[x]=to;
break;
}
}
if(flow!=val) dfn[x]=-;
return flow;
} int maxflow(){
int ans=;
while(bfs()){
memset(vis,,sizeof(vis));
for(int i=Start;i<=End;++i) list[i]=head[i];
int now=dfs(Start,0x7fffffff);
if(!now) break;
ans+=now;
}
return ans;
} int main(){
n=read(),m=read();End=n*+;
for(int i=;i<=n;++i){
add(Start,i,);
add(i+n,End,);
}
for(int i=;i<=m;++i){
int from=read(),to=read();
add(from,to+n,);
}
int ans=maxflow();
memset(vis,,sizeof(vis));
for(int i=;i<=n;++i){
if(road[i]==) continue;
int now=i;
while(now!=End&&now){
printf("%d ",now>n?now-=n:now);
int x=road[now]; road[now]=;
now=x;
}
printf("\n");
}
printf("%d",n-ans);
return ;
}

【Luogu】P2764最小路径覆盖(拆点求最大匹配)的更多相关文章

  1. Luogu P2764 最小路径覆盖问题(二分图匹配)

    P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...

  2. luogu P2764 最小路径覆盖问题

    题目描述 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任 ...

  3. LUOGU P2764 最小路径覆盖问题 (最小路径点覆盖)

    解题思路 有向图最小路径点覆盖问题,有这样的结论就是有向图最小路径点覆盖等于n-拆点二分图中最大匹配.具体怎么证明不太知道..输出方案时找到所有左部未匹配的点一直走$match​$就行了. #incl ...

  4. 【luogu P2764 最小路径覆盖问题】 模板

    题目链接:https://www.luogu.org/problemnew/show/P2764 把每个点在左边建一遍右边建一遍,再加上源点汇点,跑最大流,n-最大流就是答案. #include &l ...

  5. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  6. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  7. P2764 最小路径覆盖问题 网络流重温

    P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...

  8. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  9. 网络流二十四题之P2764 最小路径覆盖问题

    题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...

随机推荐

  1. UVALive 3523 Knights of the Round Table 圆桌骑士 (无向图点双连通分量)

    由于互相憎恨的骑士不能相邻,把可以相邻的骑士连上无向边,会议要求是奇数,问题就是求不在任意一个简单奇圈上的结点个数. 如果不是二分图,一定存在一个奇圈,同一个双连通分量中其它点一定可以加入奇圈.很明显 ...

  2. Vector 容器简单介绍

    # Vector STL简要介绍 关于STL中的vector容器,以下做一些相关介绍. #### vector 简要概述 vector 称作向量类,属于容器类,实现了动态的数组,用于元素数量变化的对象 ...

  3. 跑edgebox

    这是edge的作者的代码:https://github.com/pdollar/edges 这是matlab写的,还需要装Matlab Image Processing Toolbox和Piotr's ...

  4. jQuery JavaScript Library v3.2.1

    /*! * jQuery JavaScript Library v3.2.1 * https://jquery.com/ * * Includes Sizzle.js * https://sizzle ...

  5. C#语言命名的9种规范

    下面介绍C#语言命名的9种规范: a) 类 [规则1-1]使用Pascal规则命名类名,即首字母要大写. [规则1-2]使用能够反映类功能的名词或名词短语命名类. [规则1-3]不要使用“I”.“C” ...

  6. Spring3中好用的工具类收集

    1) 请求工具类 org.springframework.web.bind.ServletRequestUtils //取请求参数的整数值: public static Integer getIntP ...

  7. 01_12_JSP简介

    01_12_JSP简介 1. JSP简介 JSP---Java Server Pages 拥有servlet的特性与优点(本身就是一个servlet) 直接在HTML中内嵌JSP代码 JSP程序有JS ...

  8. 20180901 JavaScript闭包和匿名函数自动调用

    引用: 1. JavaScript闭包_by runoob 2. JS中(function(){xxx})这么写是什么意思? (一)闭包是可以访问上一层函数作用域里变量的函数,即便上一层函数已经关闭. ...

  9. 三倍经验——bzoj3663、4660、4206 Crazy Rabbit/最大团

    题目描述: 3663 4660 4206 题解: 第一眼:不成立的互相连边,然后用网络流求解无向图最小点覆盖! 好吧我不会. 正解: 每个点对应圆上的一段圆弧,长这样: 设对应圆弧$(l,r)$. 若 ...

  10. 使用linux安装gitolite管理git

    系统:centos7 服务器:阿里云 一.前期准备 1.安装git yum install git 2.安装perl yum install perl 3.安装openssh yum install ...