【HDOJ6224】Legends of the Three Kingdoms(概率DP)
题意:三国杀,给定4个白板武将的血量,4个角色轮流行动,每回合行动时如果该人存活则可以选择使阵营不同的角色血量-1,血量为0则死亡。每个人按自己获胜概率最大化行动,如果有多种方案概率相同则等概率选择这些策略,问最后主公、反贼、内奸三个阵营分别获胜的概率
0 < h1 < 40, 0 ≤ h2 < 40, 0 ≤ h3 < 40, 0 ≤ h4 < 40
思路:当前的决策与概率只与血量和当前行动的人有关
注意行动顺序是主公,反贼,忠臣,内奸
其他的具体看代码注释吧
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef vector<int> VI;
#define fi first
#define se second
#define MP make_pair
#define N 11000
#define M 41
#define MOD 1e9+7
#define eps 1e-13
#define pi acos(-1) double dp[][][][][][];
bool vis[][][][][]; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void dfs(int a,int b,int c,int d,int i)
{
if(vis[a][b][c][d][i]) return; vis[a][b][c][d][i]=; if(!c&&!d) //Both of the Rebel and the Traitor are dead
{
dp[a][b][c][d][i][]=1.0;
dp[a][b][c][d][i][]=dp[a][b][c][d][i][]=0.0;
return; //Monarch and the Minister win
} if(!a) //The Monarch is dead
{
if(a+b+c==) //If the Traitor is surviving and all the other players are dead
{
dp[a][b][c][d][i][]=1.0;
dp[a][b][c][d][i][]=dp[a][b][c][d][i][]=0.0;
return; //the Traitor wins
}
else
{
dp[a][b][c][d][i][]=1.0;
dp[a][b][c][d][i][]=dp[a][b][c][d][i][]=0.0;
return; //the Rebel wins
}
} if(i==&&a==||i==&&c==||i==&&b==||i==&&d==) //deadman turn
{
dfs(a,b,c,d,(i+)%);
for(int j=;j<=;j++) dp[a][b][c][d][i][j]=dp[a][b][c][d][(i+)%][j];
return;
} int j=(i+)%;
double s1=0.0;
double s2=0.0;
double s3=0.0;
int x=; if(i==||i==) //Monarch and the Minister
{
double t=-1.0; if(c)
{
dfs(a,b,c-,d,j);
double k=dp[a][b][c-][d][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a][b][c-][d][j][];
s2=dp[a][b][c-][d][j][];
s3=dp[a][b][c-][d][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a][b][c-][d][j][];
s2+=dp[a][b][c-][d][j][];
s3+=dp[a][b][c-][d][j][];
}
} if(d)
{
dfs(a,b,c,d-,j);
double k=dp[a][b][c][d-][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a][b][c][d-][j][];
s2=dp[a][b][c][d-][j][];
s3=dp[a][b][c][d-][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a][b][c][d-][j][];
s2+=dp[a][b][c][d-][j][];
s3+=dp[a][b][c][d-][j][];
}
}
} if(i==) //Rebel
{
double t=-1.0; if(a)
{
dfs(a-,b,c,d,j);
double k=dp[a-][b][c][d][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a-][b][c][d][j][];
s2=dp[a-][b][c][d][j][];
s3=dp[a-][b][c][d][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a-][b][c][d][j][];
s2+=dp[a-][b][c][d][j][];
s3+=dp[a-][b][c][d][j][];
}
} if(b)
{
dfs(a,b-,c,d,j);
double k=dp[a][b-][c][d][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a][b-][c][d][j][];
s2=dp[a][b-][c][d][j][];
s3=dp[a][b-][c][d][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a][b-][c][d][j][];
s2+=dp[a][b-][c][d][j][];
s3+=dp[a][b-][c][d][j][];
}
} if(d)
{
dfs(a,b,c,d-,j);
double k=dp[a][b][c][d-][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a][b][c][d-][j][];
s2=dp[a][b][c][d-][j][];
s3=dp[a][b][c][d-][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a][b][c][d-][j][];
s2+=dp[a][b][c][d-][j][];
s3+=dp[a][b][c][d-][j][];
}
}
} if(i==) //Traitor
{
double t=-1.0; if(a)
{
dfs(a-,b,c,d,j);
double k=dp[a-][b][c][d][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a-][b][c][d][j][];
s2=dp[a-][b][c][d][j][];
s3=dp[a-][b][c][d][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a-][b][c][d][j][];
s2+=dp[a-][b][c][d][j][];
s3+=dp[a-][b][c][d][j][];
}
} if(b)
{
dfs(a,b-,c,d,j);
double k=dp[a][b-][c][d][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a][b-][c][d][j][];
s2=dp[a][b-][c][d][j][];
s3=dp[a][b-][c][d][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a][b-][c][d][j][];
s2+=dp[a][b-][c][d][j][];
s3+=dp[a][b-][c][d][j][];
}
} if(c)
{
dfs(a,b,c-,d,j);
double k=dp[a][b][c-][d][j][]; if(k-t>eps)
{
x=;
t=k;
s1=dp[a][b][c-][d][j][];
s2=dp[a][b][c-][d][j][];
s3=dp[a][b][c-][d][j][];
}
else
if(fabs(k-t)<eps)
{
x++;
s1+=dp[a][b][c-][d][j][];
s2+=dp[a][b][c-][d][j][];
s3+=dp[a][b][c-][d][j][];
}
}
} dp[a][b][c][d][i][]=s1/x;
dp[a][b][c][d][i][]=s2/x;
dp[a][b][c][d][i][]=s3/x;
//printf("%d %d %d %d %d %.3lf %.3lf %.3lf\n",a,b,c,d,i,dp[a][b][c][d][i][0],dp[a][b][c][d][i][1],dp[a][b][c][d][i][2]);
} int main()
{
freopen("hdoj6224.in","r",stdin);
freopen("hdoj6224.out","w",stdout);
int cas;
scanf("%d",&cas); memset(vis,,sizeof(vis)); while(cas--)
{
int A,B,C,D;
scanf("%d%d%d%d",&A,&B,&C,&D);
dfs(A,B,C,D,);
printf("%.6lf %.6lf %.6lf\n",dp[A][B][C][D][][],dp[A][B][C][D][][],dp[A][B][C][D][][]);
}
return ;
}
【HDOJ6224】Legends of the Three Kingdoms(概率DP)的更多相关文章
- Codeforces 28C [概率DP]
/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2151 Check the difficulty of problems (概率DP)
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...
- 概率DP light oj 1030
t组数据 n块黄金 到这里就捡起来 出发点1 到n结束 点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6 如果满6个的话 否则 ...
- hdu 4050 2011北京赛区网络赛K 概率dp ***
题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...
- [转]概率DP总结 by kuangbin
概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...
- SGU 422 Fast Typing(概率DP)
题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...
- HDU 4050 wolf5x(动态规划-概率DP)
wolf5x Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- 概率dp入门
概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. poj2096:Collecting Bugs #include <i ...
随机推荐
- java基础——随机数问题
/** * 要求:随机打印50个随机(4-10长度)的字符串,要求字符串包含的范围是所有的英文字母包含大小写和数字, * 按照编码顺序排序,每行打印4个,要求首字符对齐 * @author fanyu ...
- iOS应用架构谈part4-本地持久化方案及动态部署
前言 嗯,你们要的大招.跟着这篇文章一起也发布了CTPersistance和CTJSBridge这两个库,希望大家在实际使用的时候如果遇到问题,就给我提issue或者PR或者评论区.每一个issue和 ...
- 66. Plus One@python
Given a non-empty array of digits representing a non-negative integer, plus one to the integer. The ...
- 使用js将div高度设置为100%
在开发的工程中使用到了一些开源的bootstrap模板进行开发,在遇到一些需要替换的内容部分部分时,经常出现高度设置100%无法生效的问题,这里来用js强行设置一下. 思路:js监听窗口的缩放 ...
- 拓扑排序 topsort
拓扑排序 对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序 ...
- docker镜像下载
获得CentOS的Docker CE 预计阅读时间: 10分钟 要在CentOS上开始使用Docker CE,请确保 满足先决条件,然后 安装Docker. 先决条件 Docker EE客户 要安装D ...
- 掌握这些Python代码技巧,编程至少快一半!
被人工智能捧红的 Python 已是一种发展完善且非常多样化的语言,其中肯定有一些你尚未发现的功能.本文或许能够让你学到一些新技巧. Python 是世界上最流行.热门的编程语言之一,原因很多,比 ...
- 使用nohup+& 踩到的坑
首先分清楚nohup与&: &是指在后台运行一般在执行命令后,都会显式的在前台执行,当Ctrl+C后进程回宕掉,但是 在命令后加&,即使Ctrl+C,程序还在进行,但是,当关闭 ...
- python列表中的深浅copy
列表中的赋值和平常的赋值是不一样的,看下面的代码: In [1]: a = 1 In [2]: b = a In [3]: a Out[3]: 1 In [4]: b Out[4]: 1 In [5] ...
- JAVA基础篇—Servlet小结
一.get请求和post请求的区别: 1.get请求是通过url传递参数,post请求是通过请求体传递参数的 2.get请求最多允许传递255个字符,对长度有限制,所以数据比较大的时候我们使用post ...