hdu 4602 递推关系矩阵快速幂模
Partition
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2362 Accepted Submission(s): 937
4=1+1+1+1
4=1+1+2
4=1+2+1
4=2+1+1
4=1+3
4=2+2
4=3+1
4=4
totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
Each test case contains two integers n and k(1≤n,k≤109).
递推公式:f(n)=4*f(n-1)-4*f(n-2)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; typedef __int64 LL;
const int Mod=; struct Matrix
{
LL a[][];
}; Matrix mult_mod(Matrix A,Matrix B)
{
int i,j,k;
Matrix C;
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
C.a[i][j]=;
for(k=;k<=;k++)
{
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j]%Mod+Mod)%Mod;
}
}
}
return C;
} Matrix Matrix_pow_mod(Matrix A,int n)
{
struct Matrix ret;
ret.a[][]=ret.a[][]=;
ret.a[][]=ret.a[][]=;
while(n)
{
if(n&) ret=mult_mod(ret,A);
A=mult_mod(A,A);
n>>=;
}
return ret;
} LL deal(int n)
{
struct Matrix A;
A.a[][]=;A.a[][]=-;A.a[][]=;A.a[][]=;
A=Matrix_pow_mod(A,n);
return (A.a[][]*%Mod+A.a[][]*%Mod)%Mod;
} int main()
{
int t,n,k;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&k);
if(k > n) {printf("0\n");continue;}
n=n-k+;
if(n==) {printf("1\n");continue;}
if(n==) {printf("2\n");continue;}
if(n==) {printf("5\n");continue;}
printf("%I64d\n",deal(n-));
}
return ;
}
hdu 4602 递推关系矩阵快速幂模的更多相关文章
- hdu 4602 Partition 矩阵快速幂
Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Proble ...
- uva 10870 递推关系矩阵快速幂模
Recurrences Input: standard input Output: standard output Consider recurrent functions of the follow ...
- HDU.2640 Queuing (矩阵快速幂)
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...
- HDU 5667 构造矩阵快速幂
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...
- HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )
链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...
- HDU 2157(矩阵快速幂)题解
How many ways?? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 6185 Covering 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...
- HDU 6395 分段矩阵快速幂 HDU 6386 建虚点+dij
http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others) Me ...
- Codeforces 185A Plant( 递推关系 + 矩阵快速幂 )
链接:传送门 题意:输出第 n 年向上小三角形的个数 % 10^9 + 7 思路: 设 Fn 为第 n 年向上小三角形的个数,经过分析可以得到 Fn = 3 * Fn-1 + ( 4^(n-1) - ...
随机推荐
- poi实现Excel输出
/** * 第一个demo 导出Excel文件 * 第一行 第三个单元格中 写入 zhangsan */ @Test public void test1() throws IOException { ...
- vue入坑教程(三)vue父子组件之间互相调用方法以及互相传递数据
1.父组件调用子组件的方法 父组件: <template> <div> <button v-on:click="clickParent">点击& ...
- 关于SQL语言的初步认识
关于SQL语言的初步认识 1.一个SQL数据库是表(Table)的集合,它由一个或多个SQL模式定义. 2.一个SQL表由行集构成,一行是列的序列(集合),每列与行对应一个数据项. 3.一个表或者是一 ...
- 01_6_Struts_ActionWildcard_通配符配置
01_6_Struts_ActionWildcard_通配符配置 1.Struts_ActionWildcard_通配符配置 1.1配置struts.xml文件 <package name=&q ...
- 使用objection来模块化开发iOS项目
转自无网不剩的博客 objection 是一个轻量级的依赖注入框架,受Guice的启发,Google Wallet 也是使用的该项目.「依赖注入」是面向对象编程的一种设计模式,用来减少代码之间的耦合度 ...
- 共享服务-FTP基础(二)
续接上一篇 使用pam(Pluggable Authentication Modules)完成用户认证 pam_service_name=vsftpd pam配置文件:/etc/pam.d/vsftp ...
- Unity基础-外部导入C# Dll(汇编集)
外部导入C# Dll(汇编集) 使用创建一个dll工程 添加依赖的dll 导入Unity中,放入Assets的任意文件夹中 使用代码生成的dll汇编集只要"use dll的名字"引 ...
- mysql主主复制汇总整理
mysql主主复制汇总整理 一.Mysql主主.主从复制主要思路: 1.mysql复制实质: 就是其他的MySQL数据库服务器将这个数据变更的二进制日志在本机上再执行一遍,因此非常重要的一点是mysq ...
- 使用linux安装gitolite管理git
系统:centos7 服务器:阿里云 一.前期准备 1.安装git yum install git 2.安装perl yum install perl 3.安装openssh yum install ...
- 【php】对象的比较
对象的比较 相等的比较 ==当使用比较运算符(==)比较两个对象变量时,比较的原则是:如果两个对象的属性和属性值 都相等,而且两个对象是同一个类的实例,那么这两个对象变量相等. 全等的比较 ===如果 ...