题意

有$n​$个小朋友,给每个人分$1~m​$个糖果,有k个限制 限制形如$(x,y,z)​$ 表示第$x​$个人分到的糖数减去第$y​$个人分到的糖数不大于$z​$,给第$i​$个人$j​$颗糖获得的满意度为$w_{i,j}​$,问总满意度最大值


点$(i,j)$表示第$i$个人分$j$个糖,当这个点属于$s$集合成立,因为是求满意度最大值,所以负权建边,同时加上个最大值$Max$使得满足最大流模板,假设不考虑限制,对于每一个$i$,连边$(i,j)\rightarrow (i,j+1),j\in[1,m)$,边权为$Max-w_i,j$,$s\rightarrow(i,1)$,那么此时的最小割便是能得到最大满意度

对于每个限制,当$x$选了$i$个糖,那么$y$至少要选$i-z$个糖,连边$(x,i)\rightarrow s, i \in [1,m] \land i - z < 1$,或$(x,i)\rightarrow (y,i-z), i \land [1,m] \land 1 \le i - z \le m$ ,或$(x,i)\rightarrow t, i \in [1,m] \land i - z > m$ ,边权为$inf$,这样,当不满足限制的割边发生时,得到的最小割会大于$inf$

关于限制的建边的详细题解:http://blog.csdn.net/wing_wuchen/article/details/77407413

答案为$Max*n-mincut$

代码

#include <bits/stdc++.h>
#define MAXN 300005
#define MAXM 50000005
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
struct Edge {
int to, nxt, c;
}edge[MAXM];
int head[MAXN], cnt = 0;
int d[MAXN], cur[MAXN], pre[MAXN], gap[MAXN];
int source, sink, limit;
void init() {
memset(head, -1, sizeof(head));
cnt = 0;
}
inline void add_edge(int u, int v, int c) {
edge[cnt].to = v;
edge[cnt].nxt = head[u];
edge[cnt].c = c;
head[u] = cnt++;
} inline void add(int u, int v, int c) {
add_edge(u, v, c); add_edge(v, u, 0);
} void rev_bfs() {
memset(gap, 0, sizeof(gap));
memset(d, -1, sizeof(d));
d[sink] = 0;
gap[0] = 1;
queue<int> que;
que.push(sink);
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].to;
if(~d[v])continue;
d[v] = d[u] + 1;
gap[d[v]]++;
que.push(v);
}
}
}
int isap() {
memcpy(cur, head, sizeof(cur));
rev_bfs();
int flow = 0, i;
int u = source;
pre[source] = source;
while(d[sink] < limit) {
if(u == sink) {
int f = inf, neck;
for(i = source; i != sink; i = edge[cur[i]].to) {
if(f > edge[cur[i]].c) {
f = edge[cur[i]].c;
neck = i;
}
}
for(i = source; i != sink; i = edge[cur[i]].to) {
edge[cur[i]].c -= f;
edge[cur[i] ^ 1].c += f;
}
flow += f;
u = neck;
}
for(i = cur[u]; ~i; i = edge[i].nxt) {
if(d[edge[i].to] + 1 == d[u] && edge[i].c) break;
}
if(~i) {
cur[u] = i;
pre[edge[i].to] = u;
u = edge[i].to;
}else {
if((--gap[d[u]]) == 0) break;
int mind = limit;
for(int i = head[u]; ~i; i = edge[i].nxt) {
if(edge[i].c && mind > d[edge[i].to]) {
cur[u] = i;
mind = d[edge[i].to];
}
}
d[u] = mind + 1;
gap[d[u]]++;
u = pre[u];
}
}
return flow;
}
int t, n, m, k, w[100][100], x, y, z;
int get(int x, int y) {return (x - 1) * m + y;}
int main() {
scanf("%d", &t);
while(t--) {
init();
scanf("%d%d%d", &n, &m, &k);
source = 0; sink = n * m + 1; limit = sink + 1;
for(int i = 1; i <= n; ++i) {
add(source, get(i, 1), inf);
for(int j = 1; j <= m; ++j) {
scanf("%d", &w[i][j]);
if(j < m) add(get(i, j), get(i, j + 1), 1000 - w[i][j]);
else add(get(i, j), sink, 1000 - w[i][j]);
}
}
for(int i = 1; i <= k; ++i) {
scanf("%d%d%d", &x, &y, &z);
for(int j = 1; j <= m; ++j) {
if(j - z < 1) add(get(x, j), source, inf);
else if(j - z <= m) add(get(x, j), get(y, j - z), inf);
else add(get(x, j), sink, inf);
}
}
int ans = isap();
if(ans >= inf) printf("-1\n"); else printf("%d\n", 1000 * n - ans);
}
return 0;
}

【HDU 6126】Give out candies 最小割的更多相关文章

  1. HDU 6126.Give out candies 最小割

    Give out candies Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  2. hdu 6126 Give out candies

    hdu 6126 Give out candies(最小割) 题意: 有\(n\)个小朋友,标号为\(1\)到\(n\),你要给每个小朋友至少\(1\)个且至多\(m\)个的糖果.小朋友们共提出\(k ...

  3. HDU 4289:Control(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 题意:有n个城市,m条无向边,小偷要从s点开始逃到d点,在每个城市安放监控的花费是sa[i],问最小花费可 ...

  4. HDU 3452 Bonsai(网络流之最小割)

    题目地址:HDU 3452 最小割水题. 源点为根节点.再另设一汇点,汇点与叶子连边. 对叶子结点的推断是看度数是否为1. 代码例如以下: #include <iostream> #inc ...

  5. HDU 5889 Barricade 【BFS+最小割 网络流】(2016 ACM/ICPC Asia Regional Qingdao Online)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. HDU 3526 Computer Assembling(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=3526 题意:有个屌丝要配置电脑,现在有n个配件需要购买,有两家公司出售这n个配件,还有m个条件是如果配件x和配件 ...

  7. HDU 6214 Smallest Minimum Cut 最小割,权值编码

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 题意:求边数最小的割. 解法: 建边的时候每条边权 w = w * (E + 1) + 1; 这 ...

  8. HDU 3251 Being a Hero(最小割+输出割边)

    Problem DescriptionYou are the hero who saved your country. As promised, the king will give you some ...

  9. HDU 3691 Nubulsa Expo(全局最小割)

    Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...

随机推荐

  1. 聊聊高并发(三十九)解析java.util.concurrent各个组件(十五) 理解ExecutorService接口的设计

    上一篇讲了Executor接口的设计,目的是将任务的运行和任务的提交解耦.能够隐藏任务的运行策略.这篇说说ExecutorService接口.它扩展了Executor接口,对Executor的生命周期 ...

  2. android 5.0 默认水波纹背景属性,可设置不论什么View

    actionBarItemBackground   5.0以上超出边界圆形水波纹 selectableItemBackground  5.0以上边界内圆形水波纹 这两个属性在5.0下面是默认的灰色效果 ...

  3. 摩托罗拉SE955 One Discrete Length,Two Discrete Lengths,Length Within Range 相关解释

    motorola scanner datasheet相关解释(下面通过Simple Serial Interface(SSI)进行设置,非扫描官方datasheet的设置条码): One Discre ...

  4. 如何查看selenium api文档

    参考文章:https://www.cnblogs.com/yoyoketang/p/6189740.html 环境:windows + python3 + selenium3 打开cmd,执行命令:p ...

  5. 【Python】IDLE启动错误

    启动IDLE时报Subprocess Startup Error错误 错误信息 IDLE's subprocess didn't make connection.Either IDLE cant't ...

  6. Python 时间格式化(转)

    From:http://www.cnblogs.com/65702708/archive/2011/04/17/2018936.html http://www.wklken.me/posts/2015 ...

  7. OpenCV 中的三大数据类型:CvMat 类型

    前言 本文将介绍 OpenCV 中的矩阵结构 CvMat 并提供几个很常用的矩阵使用方法. 更多的矩阵处理函数还请参阅相关资料. CvMat 的类型定义 typedef struct CvMat { ...

  8. Android 事件分发机制 图解

    在Android 开发中事件分发是比较重要的,也是比较难理解的,之前看过这方面的东西,以为自己弄懂了,也就没太注意,最近面试呢,想着肯定要问到这一块的东西,回顾的时候发现又忘了,真是好记性不如烂笔头啊 ...

  9. vscode webstrom 配置 eslint 使用 airbnb 规范

    1.安装eslint npm eslint-plugin-react eslint-plugin-import babel-eslint -g 2.全局配置文件,放到c:/user/***/ { &q ...

  10. EasyDSS RTMP流媒体解决方案之直播录像自动清理方案

    本文转自Marvin的博客: http://blog.csdn.net/marvin1311/article/details/78660592 EasyDSS_Solution直播录像清理 直播录像, ...