BZOJ_2369_区间_决策单调性

Description

对于一个区间集合
{A1,A2……Ak}(K>1,Ai不等于Aj(i不等于J),定义其权值
 
S=|A1∪A2∪……AK|*|A1∩A2……∩Ak|
即它们的交区间的长度乘上它们并区间的长度。
显然,如果这些区间没有交集则权值为0。
Your Task
给定你若干互不相等的区间,选出若干区间使其权值最大。

Input

第一行n表示区间的个数
接下来n行每行两个整数l r描述一个区间[l,r]

Output

 
在一行中输出最大权值

Sample Input

4
1 6
4 8
2 7
3 5

Sample Output

24

HINT

样例解释

选择[1,6]和[2,7]是最优的。

数据约定

100%:1<N<=10^6,1<=L<R<=10^6


首先有结论:肯定有一种最优方案只选了两个,因为选n个不会比只选左右的区间更优。

于是按左端点排序,然后把区间包含的那种直接统计答案并踢掉。

现在左右都单调了,可以证明满足决策单调性。

直接上决策单调性即可。

注意这道题区间长度为r-l。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
__attribute__((optimize("-O3")))inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
__attribute__((optimize("-O3")))int rd() {
int x=0;
char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
#define N 1000050
struct Line {
int l,r;
bool operator < (const Line &x) const {
return l<x.l;
}
}a[N];
struct A {
int l,r,p;
}Q[N];
__attribute__((optimize("-O3")))ll Y(int j,int i) {
// if(a[j].r<a[i].l) return -1ll<<60;
return 1ll*(a[j].r-a[i].l)*(a[i].r-a[j].l);
}
__attribute__((optimize("-O3")))int find(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(a.p,mid)>=Y(x,mid)) l=mid+1;
else r=mid;
}
return l;
}
ll ans;
int n;
__attribute__((optimize("-O3")))int main() {
n=rd();
register int i,t=0;
for(i=1;i<=n;i++) {
a[i].l=rd();
a[i].r=rd();
}
sort(a+1,a+n+1); a[0].r=-1;
for(i=1;i<=n;i++) {
if(a[i].r<=a[t].r) {
ans=max(ans,1ll*(a[t].r-a[t].l)*(a[i].r-a[i].l));
}else a[++t]=a[i];
}
n=t;
int l=0,r=0;
Q[r++]=(A){1,n,1};
for(i=2;i<=n;i++) {
if(l<r) Q[l].l++;
while(l<r&&Q[l].l>Q[l].r) l++;
if(l<r) ans=max(ans,Y(Q[l].p,i));
if(l==r||Y(i,n)>Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)>Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find(Q[r-1],i);
Q[r-1].r=x-1; Q[r++]=(A){x,n,i};
}
}
}
printf("%lld\n",ans);
}

BZOJ_2369_区间_决策单调性的更多相关文章

  1. BZOJ_5311_贞鱼_决策单调性+带权二分

    BZOJ_5311_贞鱼_决策单调性+带权二分 Description 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半. 这不?他们遇到了大麻烦! n只贞鱼到陆地上乘车,现在有k辆汽 ...

  2. BZOJ2687 交与并/BZOJ2369 区间【决策单调性优化DP】【分治】

    Description 对于一个区间集合 {A1,A2--Ak}(K>1,Ai不等于Aj(i不等于J),定义其权值 S=|A1∪A2∪--AK|*|A1∩A2--∩Ak| 即它们的交区间的长度乘 ...

  3. [NOI2016]区间 题解(决策单调性+线段树优化)

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1593  Solved: 869[Submit][Status][ ...

  4. luogu P1721 [NOI2016]国王饮水记 斜率优化dp 贪心 决策单调性

    LINK:国王饮水记 看起来很不可做的样子. 但实际上还是需要先考虑贪心. 当k==1的时候 只有一次操作机会.显然可以把那些比第一个位置小的都给扔掉. 然后可以得知剩下序列中的最大值一定会被选择. ...

  5. [NOI2009]诗人小G(dp + 决策单调性优化)

    题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划 ...

  6. CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)

    题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...

  7. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  8. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  9. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

随机推荐

  1. leetcode 题解 || Remove Nth Node From End of List 问题

    problem: Given a linked list, remove the nth node from the end of list and return its head. For exam ...

  2. 【每日Scrum】第二天(4.23) TD学生助手Sprint2站立会议

    站立会议 组员 昨天 今天 困难 签到 刘铸辉 (组长) 昨天觉得整个界面不适合后期功能扩展,所以进行了整体整改 今天主要看了多事件处理的内容然后改了下界面, 遇到的困难就是正在寻找用户交互性比较好的 ...

  3. Django-ondelete

    on_delete=None, # 删除关联表中的数据时,当前表与其关联的field的行为 on_delete=models.CASCADE, # 删除关联数据,与之关联也删除 on_delete=m ...

  4. unittest相关文档

    文档链接: http://blog.csdn.net/wangst4321/article/details/8454118

  5. SharePoint ULS Log Viewer 日志查看器

    SharePoint ULS Log Viewer 日志查看器 项目描写叙述 这是一个Windows应用程序,更加轻松方便查看SharePoint ULS日志文件.支持筛选和简单的视图. 信息 这是一 ...

  6. html抽取文本信息-java版(适合lucene建立索引)

    import org.htmlparser.NodeFilter; import org.htmlparser.Parser; import org.htmlparser.beans.StringBe ...

  7. React - S1

    资料: 1. https://developer.mozilla.org/zh-CN/docs/Web/JavaScript 进度: 教程 - 高级内容remaining; 参考remaining j ...

  8. ThinkPHP5 安装自定义模块

    安装官方给的demo,在build.php文件中 <?php // +-------------------------------------------------------------- ...

  9. input输入框输入大小写字母自动转换

    input输入框输入小写字母自动转换成大写字母有两种方法 1.用js onkeyup事件,即时把字母转换为大写字母: html里input加上 <input type="text&qu ...

  10. ffmpeg强制使用TCP方式推流到EasyDarwin开源流媒体服务器进行直播

    我们的EasyDarwin目前部署在阿里云的服务器上面,运行的效果是非常好的,而且无论是以TCP方式.还是UDP的方式推送,都可以非常好地进行直播转发: 但并不是所有的用户服务器都是阿里云的形式,有很 ...