BZOJ_2369_区间_决策单调性

Description

对于一个区间集合
{A1,A2……Ak}(K>1,Ai不等于Aj(i不等于J),定义其权值
 
S=|A1∪A2∪……AK|*|A1∩A2……∩Ak|
即它们的交区间的长度乘上它们并区间的长度。
显然,如果这些区间没有交集则权值为0。
Your Task
给定你若干互不相等的区间,选出若干区间使其权值最大。

Input

第一行n表示区间的个数
接下来n行每行两个整数l r描述一个区间[l,r]

Output

 
在一行中输出最大权值

Sample Input

4
1 6
4 8
2 7
3 5

Sample Output

24

HINT

样例解释

选择[1,6]和[2,7]是最优的。

数据约定

100%:1<N<=10^6,1<=L<R<=10^6


首先有结论:肯定有一种最优方案只选了两个,因为选n个不会比只选左右的区间更优。

于是按左端点排序,然后把区间包含的那种直接统计答案并踢掉。

现在左右都单调了,可以证明满足决策单调性。

直接上决策单调性即可。

注意这道题区间长度为r-l。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
__attribute__((optimize("-O3")))inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
__attribute__((optimize("-O3")))int rd() {
int x=0;
char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
#define N 1000050
struct Line {
int l,r;
bool operator < (const Line &x) const {
return l<x.l;
}
}a[N];
struct A {
int l,r,p;
}Q[N];
__attribute__((optimize("-O3")))ll Y(int j,int i) {
// if(a[j].r<a[i].l) return -1ll<<60;
return 1ll*(a[j].r-a[i].l)*(a[i].r-a[j].l);
}
__attribute__((optimize("-O3")))int find(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(a.p,mid)>=Y(x,mid)) l=mid+1;
else r=mid;
}
return l;
}
ll ans;
int n;
__attribute__((optimize("-O3")))int main() {
n=rd();
register int i,t=0;
for(i=1;i<=n;i++) {
a[i].l=rd();
a[i].r=rd();
}
sort(a+1,a+n+1); a[0].r=-1;
for(i=1;i<=n;i++) {
if(a[i].r<=a[t].r) {
ans=max(ans,1ll*(a[t].r-a[t].l)*(a[i].r-a[i].l));
}else a[++t]=a[i];
}
n=t;
int l=0,r=0;
Q[r++]=(A){1,n,1};
for(i=2;i<=n;i++) {
if(l<r) Q[l].l++;
while(l<r&&Q[l].l>Q[l].r) l++;
if(l<r) ans=max(ans,Y(Q[l].p,i));
if(l==r||Y(i,n)>Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)>Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find(Q[r-1],i);
Q[r-1].r=x-1; Q[r++]=(A){x,n,i};
}
}
}
printf("%lld\n",ans);
}

BZOJ_2369_区间_决策单调性的更多相关文章

  1. BZOJ_5311_贞鱼_决策单调性+带权二分

    BZOJ_5311_贞鱼_决策单调性+带权二分 Description 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半. 这不?他们遇到了大麻烦! n只贞鱼到陆地上乘车,现在有k辆汽 ...

  2. BZOJ2687 交与并/BZOJ2369 区间【决策单调性优化DP】【分治】

    Description 对于一个区间集合 {A1,A2--Ak}(K>1,Ai不等于Aj(i不等于J),定义其权值 S=|A1∪A2∪--AK|*|A1∩A2--∩Ak| 即它们的交区间的长度乘 ...

  3. [NOI2016]区间 题解(决策单调性+线段树优化)

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1593  Solved: 869[Submit][Status][ ...

  4. luogu P1721 [NOI2016]国王饮水记 斜率优化dp 贪心 决策单调性

    LINK:国王饮水记 看起来很不可做的样子. 但实际上还是需要先考虑贪心. 当k==1的时候 只有一次操作机会.显然可以把那些比第一个位置小的都给扔掉. 然后可以得知剩下序列中的最大值一定会被选择. ...

  5. [NOI2009]诗人小G(dp + 决策单调性优化)

    题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划 ...

  6. CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)

    题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...

  7. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  8. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  9. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

随机推荐

  1. d3js 添加数据

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...

  2. C语言-回溯例4

    1,问题提出 日本数学家桥本吉彦教授于1993年10月在我国山东举行的中日美三国数学教育研讨会上向与会者提出以下填数趣题: 把1,2,...,9这9个数字填入下式的九个方格中(数字不得重复),使下面 ...

  3. Web框架Django(二)

    一.Model 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MySQLdb 来连接数据库,并编写数据访问层代码 业务逻辑层去调用数据访问层 ...

  4. Mysql导出大量数据

    outfile 导出文件   select name from t1 into outfile "/tmp/test.txt"   infile 导入文件 导入到表t1中的name ...

  5. VS2010配置QT5.5.0开发环境

    一.官网下载QT和qtvsaddin插件 网址:http://www.qt.io/download-open-source/ 1. 2. 3. 得到下载的安装包,点击安装就能够了 watermark/ ...

  6. iOS移动开发周报-第17期

    lhq iOS移动开发周报-第17期 前言 欢迎国内的iOS同行或技术作者向我提交周报线索,线索可以是新闻.教程.开发工具或开源项目,将相关文章的简介和链接在微博上发布并 @唐巧_boy 即可. [摘 ...

  7. Active Directory的DirectoryEntry与DirectorySearcher初识及Filter语法

    前言 增删改查,我想查询是最先要说的一个了.本章主要记录使用.NET Framework进行对域控服务器对象的查询操作,介绍DirectoryEntry与DirectorySearcher(搜索器)及 ...

  8. 高性能MySQL(四)

    Schema与数据类型优化 需要优化的数据类型 更小的通常更好 简单就好 尽量避免NULL 整数类型 存储整数,有TINYINT.SMALLINT.MEDIUMINT.INT.BIGINT,分别使用8 ...

  9. HDU 1247 Hat’s Words(字典树变形)

    题目链接:pid=1247" target="_blank">http://acm.hdu.edu.cn/showproblem.php? pid=1247 Pro ...

  10. EasyDarwin开源流媒体云平台之EasyRMS录播服务器功能设计

    需求背景 EasyDarwin开发团队维护EasyDarwin开源流媒体服务器也已经很多年了,之前也陆陆续续尝试过很多种服务端录像的方案,有:在EasyDarwin中直接解析收到的RTP包,重新组包录 ...