题目链接:http://poj.org/problem?id=2135

今天学习最小费用流。模板手敲了一遍。

产生了一个新的问题:对于一条无向边,这样修改了正向边容量后,反向边不用管吗?

后来想了想,得出了个结论。路径所选的边只会包括正反中的一条。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 2e3;
const int INF = 1e9;
int dist[maxn];
int pv[maxn],pe[maxn];
struct edge
{
int to, cap, rev;
int cost;
edge(int a, int b, int c, int d)
{
to = a, cap = b, cost = c, rev = d;
}
};
vector<edge> g[maxn];
void addedge(int from,int to,int cap,int cost)
{
g[from].push_back(edge(to,cap,cost,g[to].size()));
g[to].push_back(edge(from,,-cost,g[from].size()-));
}
int n;
int vis[maxn];
void SPFA(int s, int t)
{
for(int i = ; i < maxn; i++) dist[i] = INF;
memset(vis, , sizeof(vis));
dist[s] = , vis[s] = ;
queue<int> q;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for(int i = ; i < g[u].size(); i++)
{
edge &e = g[u][i];
if(e.cap > && (dist[e.to] - (dist[u] + e.cost)) > )
{
pv[e.to] = u, pe[e.to] = i;
dist[e.to] = dist[u] + e.cost;
if(!vis[e.to])
{
vis[e.to] = ;
q.push(e.to);
}
}
}
}
}
int min_cost_flow(int s,int t,int f,int& max_flow)
{
int ret = 0.0;
while(f>)
{
SPFA(s, t);
if(dist[t] == INF) return ret;///同一目的地,每次增广路都是最小费用
///当所有边的流量都流净后,即没有残余网络,返回。
int d = f;
for(int v=t;v!=s;v=pv[v])
{
d = min(d,g[pv[v]][pe[v]].cap);
}
f -= d;
max_flow += d;
ret += (int)d*dist[t]; ///走一单位就消耗dist[t]
for(int v=t;v!=s;v=pv[v])
{
edge &e = g[pv[v]][pe[v]];
e.cap -= d;
g[v][e.rev].cap += d;
}
}
return ret;
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
int s=,t=n+;
addedge(s,,,);
addedge(n,t,,);
for(int i=;i<=m;i++)
{
int x,y,w;
scanf("%d %d %d",&x,&y,&w);
addedge(x,y,,w);
addedge(y,x,,w);
}
// printf("%d\n",e[6].cap);
///反向边不用管它,因为路径只会选择正反里面的一条边
int maxflow = ;
int ans = min_cost_flow(s,t,INF,maxflow);
for(int i = ; i < maxn; i++) g[i].clear();
printf("%d\n",ans);
return ;
}

Code

POJ - 2135最小费用流的更多相关文章

  1. POJ 2135 /// 最小费用流最大流 非负花费 BellmanFord模板

    题目大意: 给定一个n个点m条边的无向图 求从点1去点n再从点n回点1的不重叠(同一条边不能走两次)的最短路 挑战P239 求去和回的两条最短路很难保证不重叠 直接当做是由1去n的两条不重叠的最短路 ...

  2. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  3. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  4. poj 2135 Farm Tour 【无向图最小费用最大流】

    题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...

  5. 【网络流#9】POJ 2135 Farm Tour 最小费用流 - 《挑战程序设计竞赛》例题

    [题意]给出一张无向图,从1开始到n,求两条没有公共边的最短路,使得路程总和最小 每条边的权值设为费用,最大流量设为1,然后就是从源点到汇点流量为2的最小费用流. 因为是规定了流量,新建一个源点和一个 ...

  6. Farm Tour POJ - 2135 (最小费用流)

    When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= ...

  7. POJ 2135 Farm Tour 最小费用流

    两条路不能有重边,既每条边的容量是1.求流量为2的最小费用即可. //#pragma comment(linker, "/STACK:1024000000,1024000000") ...

  8. Poj(2135),MCMF,模板

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  9. POJ 2135.Farm Tour 消负圈法最小费用最大流

    Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4914   Accepted: 1284   ...

随机推荐

  1. Lecture 3

    surface models 1. The two main methods of creating surface models are interpolation and triangulatio ...

  2. Python入门基础--字符编码与文件处理

    字符编码 文本编辑器存取文件的原理 #1.打开编辑器就打开了启动了一个进程,是在内存中的,所以,用编辑器编写的内容也都是存放与内存中的,断电后数据丢失 #2.要想永久保存,需要点击保存按钮:编辑器把内 ...

  3. UVa - 12096 集合栈计算机(STL)

    [题意] 有一个专门为了集合运算而设计的“集合栈”计算机.该机器有一个初始为空的栈,并且支持以下操作:PUSH:空集“{}”入栈DUP:把当前栈顶元素复制一份后再入栈UNION:出栈两个集合,然后把两 ...

  4. 线程中更新ui方法汇总

    一.为何写作此文   你是不是经常看到很多书籍中说:不能在子线程中操作ui,不然会报错.你是不是也遇到了如下的疑惑(见下面的代码): @Override protected void onCreate ...

  5. KVO And KVC

    http://www.cocoachina.com/industry/20140224/7866.html

  6. 让 PHP COOKIE 立即生效(不用刷新就可以使用)

    <?php function set_my_cookie($, $path = '', $domain = '') { $_COOKIE[$var] = $value; setcookie($v ...

  7. 移动端click时间、touch事件、tap事件详解

    一.click 和 tap 比较 两者都会在点击时触发,但是在手机WEB端,click会有 200~300 ms,所以请用tap代替click作为点击事件. singleTap和doubleTap 分 ...

  8. Xshell设置登录会话

    新建会话 点击用户登录验证输入账号密码 如果是公钥登录,选择pubulic key登录

  9. Model View Controller(MVC) in PHP

    The model view controller pattern is the most used pattern for today’s world web applications. It ha ...

  10. 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树

    题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...