题目链接:http://poj.org/problem?id=2135

今天学习最小费用流。模板手敲了一遍。

产生了一个新的问题:对于一条无向边,这样修改了正向边容量后,反向边不用管吗?

后来想了想,得出了个结论。路径所选的边只会包括正反中的一条。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 2e3;
const int INF = 1e9;
int dist[maxn];
int pv[maxn],pe[maxn];
struct edge
{
int to, cap, rev;
int cost;
edge(int a, int b, int c, int d)
{
to = a, cap = b, cost = c, rev = d;
}
};
vector<edge> g[maxn];
void addedge(int from,int to,int cap,int cost)
{
g[from].push_back(edge(to,cap,cost,g[to].size()));
g[to].push_back(edge(from,,-cost,g[from].size()-));
}
int n;
int vis[maxn];
void SPFA(int s, int t)
{
for(int i = ; i < maxn; i++) dist[i] = INF;
memset(vis, , sizeof(vis));
dist[s] = , vis[s] = ;
queue<int> q;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for(int i = ; i < g[u].size(); i++)
{
edge &e = g[u][i];
if(e.cap > && (dist[e.to] - (dist[u] + e.cost)) > )
{
pv[e.to] = u, pe[e.to] = i;
dist[e.to] = dist[u] + e.cost;
if(!vis[e.to])
{
vis[e.to] = ;
q.push(e.to);
}
}
}
}
}
int min_cost_flow(int s,int t,int f,int& max_flow)
{
int ret = 0.0;
while(f>)
{
SPFA(s, t);
if(dist[t] == INF) return ret;///同一目的地,每次增广路都是最小费用
///当所有边的流量都流净后,即没有残余网络,返回。
int d = f;
for(int v=t;v!=s;v=pv[v])
{
d = min(d,g[pv[v]][pe[v]].cap);
}
f -= d;
max_flow += d;
ret += (int)d*dist[t]; ///走一单位就消耗dist[t]
for(int v=t;v!=s;v=pv[v])
{
edge &e = g[pv[v]][pe[v]];
e.cap -= d;
g[v][e.rev].cap += d;
}
}
return ret;
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
int s=,t=n+;
addedge(s,,,);
addedge(n,t,,);
for(int i=;i<=m;i++)
{
int x,y,w;
scanf("%d %d %d",&x,&y,&w);
addedge(x,y,,w);
addedge(y,x,,w);
}
// printf("%d\n",e[6].cap);
///反向边不用管它,因为路径只会选择正反里面的一条边
int maxflow = ;
int ans = min_cost_flow(s,t,INF,maxflow);
for(int i = ; i < maxn; i++) g[i].clear();
printf("%d\n",ans);
return ;
}

Code

POJ - 2135最小费用流的更多相关文章

  1. POJ 2135 /// 最小费用流最大流 非负花费 BellmanFord模板

    题目大意: 给定一个n个点m条边的无向图 求从点1去点n再从点n回点1的不重叠(同一条边不能走两次)的最短路 挑战P239 求去和回的两条最短路很难保证不重叠 直接当做是由1去n的两条不重叠的最短路 ...

  2. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  3. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  4. poj 2135 Farm Tour 【无向图最小费用最大流】

    题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...

  5. 【网络流#9】POJ 2135 Farm Tour 最小费用流 - 《挑战程序设计竞赛》例题

    [题意]给出一张无向图,从1开始到n,求两条没有公共边的最短路,使得路程总和最小 每条边的权值设为费用,最大流量设为1,然后就是从源点到汇点流量为2的最小费用流. 因为是规定了流量,新建一个源点和一个 ...

  6. Farm Tour POJ - 2135 (最小费用流)

    When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= ...

  7. POJ 2135 Farm Tour 最小费用流

    两条路不能有重边,既每条边的容量是1.求流量为2的最小费用即可. //#pragma comment(linker, "/STACK:1024000000,1024000000") ...

  8. Poj(2135),MCMF,模板

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  9. POJ 2135.Farm Tour 消负圈法最小费用最大流

    Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4914   Accepted: 1284   ...

随机推荐

  1. 编译-LAMP基于fastcgi

    前言 最近没更新新篇幅了,今天就来点干活,过多的也不说了下面着手干!干!干! 准备环境 centos7.5 apr-1.6.3.tar.gz  apr-util-1.6.1.tar.gz      h ...

  2. ubuntu下RedisDesktopManager的安装,redis可视化工具

    官方网站:https://redisdesktop.com/download 一句命令行解决: sudo snap install redis-desktop-manager 或者直接通过软件管理中心 ...

  3. python——全局变量&局部变量

    >>> count = 5 >>> def function(): count = 10 print(10) >>> function() 10 ...

  4. 水题:HDU1716-排列2

    排列2 Problem Description Ray又对数字的列产生了兴趣: 现有四张卡片,用这四张卡片能排列出很多不同的4位数,要求按从小到大的顺序输出这些4位数. Input 每组数据占一行,代 ...

  5. Linux学习-什么是 daemon 与服务 (service)

    『常驻在记体体中的程序,且可以提供 一些系统或网络功能,那就是服务』.而服务一般的英文说法是『 service 』. 那么 daemon 与 service 有关啰?否则为什么都能够提供 某些系统或网 ...

  6. HDU 5238 Calculator 线段树 中国剩余定理

    题意: 给一个计算器,有一系列计算步骤,只有加,乘,幂三种运算. 有一种查询操作:查询初始值为\(x\)的时候,最终运算结果模\(29393\)的值. 有一种修改操作:可以修改第\(p\)个运算的运算 ...

  7. 深入理解Java虚拟机(精华总结)

    作者:战斗民族就是干 转自:http://www.cnblogs.com/prayers/p/5515245.html 一.运行时数据区域 Java虚拟机管理的内存包括几个运行时数据内存:方法区.虚拟 ...

  8. Xampp 配置出现403无法访问

    找到\xampp\apache\conf\httpd.conf配置文件 Access forbidden! You don’t have permission to access the reques ...

  9. 理一理Spring如何对接JUnit

    测试代码 package org.simonme.srcstudy.spring3.demo.stub; import static org.junit.Assert.assertNotNull; i ...

  10. javascript 获取键盘上的按键代码KeyCode

    Enter键的keyCode为13 Alt + Enter 的keyCode为10 $(document).on( 'keypress', function ( e ) { console.log( ...