ML| EM
What's xxx
The EM algorithm is used to find the maximum likelihood parameters of a statistical model in cases where the equations cannot be solved directly. Typically these models involve latent variables in addition to unknown parameters and known data observations. That is, either there are missing values among the data, or the model can be formulated more simply by assuming the existence of additional unobserved data points.
The motivation is as follows. If we know the value of the parameters $\boldsymbol\theta$, we can usually find the value of the latent variables $\mathbf{Z}$ by maximizing the log-likelihood over all possible values of $\mathbf{Z}$, either simply by iterating over $\mathbf{Z}$ or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables $\mathbf{Z}$, we can find an estimate of the parameters $\boldsymbol\theta$ fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both $\boldsymbol\theta$ and $\mathbf{Z}$ are unknown:
- First, initialize the parameters $\boldsymbol\theta$ to some random values.
- Compute the best value for $\mathbf{Z}$ given these parameter values.
- Then, use the just-computed values of $\mathbf{Z}$ to compute a better estimate for the parameters $\boldsymbol\theta$. Parameters associated with a particular value of $\mathbf{Z}$ will use only those data points whose associated latent variable has that value.
- Iterate steps 2 and 3 until convergence.
The algorithm as just described monotonically approaches a local minimum of the cost function, and is commonly called hard EM. The k-means algorithm is an example of this class of algorithms.
However, we can do somewhat better by, rather than making a hard choice for $\mathbf{Z}$ given the current parameter values and averaging only over the set of data points associated with a particular value of $\mathbf{Z}$, instead determining the probability of each possible value of $\mathbf{Z}$ for each data point, and then using the probabilities associated with a particular value of $\mathbf{Z}$ to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM.
With the ability to deal with missing data and observe unidentified variables, EM is becoming a useful tool to price and manage risk of a portfolio.
Algorithm
Given a statistical model consisting of a set $\mathbf{X}$ of observed data, a set of unobserved latent data or missing values $\mathbf{Z}$, and a vector of unknown parameters $\boldsymbol\theta$, along with a likelihood function $L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta)$, the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data
$L(\boldsymbol\theta; \mathbf{X}) = p(\mathbf{X}|\boldsymbol\theta) = \sum_{\mathbf{Z}} p(\mathbf{X},\mathbf{Z}|\boldsymbol\theta) $
However, this quantity is often intractable (e.g. if $\mathbf{Z}$ is a sequence of events, so that the number of values grows exponentially with the sequence length, making the exact calculation of the sum extremely difficult).
The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:
1. Expectation step (E step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of $\mathbf{Z}$ given $\mathbf{X}$ under the current estimate of the parameters $\boldsymbol\theta^{(t)}$:
$Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) = \operatorname{E}_{\mathbf{Z}|\mathbf{X},\boldsymbol\theta^{(t)}}\left[ \log L (\boldsymbol\theta;\mathbf{X},\mathbf{Z}) \right] \,$
2. Maximization step (M step): Find the parameter that maximizes this quantity:
$\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta}{\operatorname{arg\,max}} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \, $
Note that in typical models to which EM is applied:
- The observed data points $\mathbf{X}$ may be discrete (taking values in a finite or countably infinite set) or continuous (taking values in an uncountably infinite set). There may in fact be a vector of observations associated with each data point.
- The missing values (aka latent variables) $\mathbf{Z}$ are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
- The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).
ML| EM的更多相关文章
- 高斯混合模型(理论+opencv实现)
查资料的时候看了一个不文明的事情,转载别人的东西而不标注出处,结果原创无人知晓,转载很多人评论~~标注了转载而不说出处这样的人有点可耻! 写在前面: Gaussian Mixture Model (G ...
- 【十大经典数据挖掘算法】EM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...
- opencv3中的机器学习算法之:EM算法
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...
- EM算法原理以及高斯混合模型实践
EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然 ...
- Notes : <Hands-on ML with Sklearn & TF> Chapter 7
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- Notes : <Hands-on ML with Sklearn & TF> Chapter 6
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- Notes : <Hands-on ML with Sklearn & TF> Chapter 5
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- EM学习-思想和代码
EM算法的简明实现 当然是教学用的简明实现了,这份实现是针对双硬币模型的. 双硬币模型 假设有两枚硬币A.B,以相同的概率随机选择一个硬币,进行如下的抛硬币实验:共做5次实验,每次实验独立的抛十次,结 ...
- ML: 聚类算法R包-对比
测试验证环境 数据: 7w+ 条,数据结构如下图: > head(car.train) DV DC RV RC SOC HV LV HT LT Type TypeName 1 379 85.09 ...
随机推荐
- 第一课:PHP 文件是什么?
PHP 文件是什么? PHP 文件可包含文本.HTML.JavaScript代码和 PHP 代码 PHP 代码在服务器上执行,结果以纯 HTML 形式返回给浏览器 PHP 文件的默认文件扩展名是 &q ...
- POJ - 3660 Cow Contest(传递闭包)
题意: n个点,m条边. 若A 到 B的边存在,则证明 A 的排名一定在 B 前. 最后求所有点中,排名可以确定的点的个数. n <= 100, m <= 4500 刚开始还在想是不是拓扑 ...
- ubuntu更新内核后卡在自检无法开机的解决方法
下载deb包安装,重启后卡在自检,黑屏. 重启进旧内核,仍然卡在自检,黑屏. 强制关机后再重启,在grub按e修改启动项,改成直接进命令行模式.使用 sudo apt-get remove linux ...
- Linux学习-Shell的变量功能
什么是变量? 简单的说,就是让某一个特定字串代表不固定的内容. 变量的可变性与方便性 举例来说,我们每个帐号的邮件信箱默认是以 MAIL 这个变量来进行存取的, 当 dmtsai 这个 使用者登陆时, ...
- [转载] C语言细节,写的非常棒!
这篇文章主要讨论C语言细节问题.在找一份工作的时候,语言细节占的比例非常小,之前看某个贴着讨论,估计语言细节在面试中,占了10%的比重都不到,那为什么还要研究C语言的细节呢,我觉得有三个原因促使我总结 ...
- 28、editText只输入英文字母和'-',用于授权码输入
InputFilter filter = new InputFilter() { @Override public CharSequence filter(CharSequence source, i ...
- webdriver高级应用- 禁止IE的保护模式
#encoding=utf-8 from selenium import webdriver from selenium.webdriver.common.desired_capabilities i ...
- 101 Hack 50
101 Hack 50 闲来无事.也静不下心,打个代码压压压惊 Hard Questions by kevinsogo Vincent and Catherine are classmates who ...
- [小技巧]使用set对列表去重,并保持列表原来顺序
- [转]查看Linux版本信息
一.查看Linux内核版本命令(两种方法): 1.cat /proc/version [root@S-CentOS home]# cat /proc/version Linux version 2.6 ...