题目描述

在一个凹槽中放置了 n 层砖块、最上面的一层有n 块砖,从上到下每层依次减少一块砖。每块砖

都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示。

14 15  4  3  23
33 33 76 2
2 13 11
22 23
31

如果你想敲掉第 i 层的第j 块砖的话,若i=1,你可以直接敲掉它;若i>1,则你必须先敲掉第i-1 层的第j 和第j+1 块砖。

你现在可以敲掉最多 m 块砖,求得分最多能有多少。

输入输出格式

输入格式:

输入文件的第一行为两个正整数 n 和m;接下来n 行,描述这n 层砖块上的分值a[i][j],满足

0≤a[i][j]≤100。

对于 100%的数据,满足1≤n≤50,1≤m≤n*(n+1)/2;

输出格式:

输出文件仅一行为一个正整数,表示被敲掉砖块的最大价值总和。

输入输出样例

输入样例#1: 复制

4 5
2 2 3 4
8 2 7
2 3
49
输出样例#1: 复制
19

看这位大佬的题解写的  https://www.cnblogs.com/Mrsrz/p/7257290.html

我们先把砖块“左对齐”,然后敲掉砖块(i,j)(i>1)时,就必须先敲掉(i-1,j)和(i-1,j+1)。

设f[i][j][k]f[i][j][k]表示打到第i列第j块砖(且这块砖必须选),一共打了k块砖时所得的分数,则有

f[i][j][k]=max(f[i][j][k],f[i+1][p][k−j](j−1≤p<n−i+1)+∑v=1ja[v][i])

其中求第i列前v块砖之和可以直接预处理出来。因为求第i列时要用到第i+1列的东西,所以枚举i时应该从大到小。

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
typedef long long ll;
#define inf 2147483647
#define ri register int int n, m;
int a[][];
int sum[][];
int dp[][][];
int ans = ;
int x; int main() {
ios::sync_with_stdio(false);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin >> n >> m;
for (int i = ; i <= n; i++)
for (int j = ; j <= n - i + ; j++){
cin>>x;
sum[j][i]=sum[j][i-]+x;
}
memset(dp, -, sizeof(dp));
dp[n + ][][] = ;
for (int i = n; i >= ; i--)
for (int j = ; j <= n-i+; j++) //这里因为可以不选所以从0开始
for (int k = j * (j + ) / ; k <= m; k++) //k最小就是这个位置向上形成的三角形
for (int p = (j) ? j - : ; p <= n - i; p++) //p为0特殊处理
if (dp[i + ][p][k - j] != -) {
dp[i][j][k] = max(dp[i][j][k], dp[i + ][p][k - j] + sum[i][j]);
ans = max(ans, dp[i][j][k]);
}
cout << ans; return ;
}

我们先把砖块“左对齐”,然后敲掉砖块(i,j)(i>1)时,就必须先敲掉(i-1,j)和(i-1,j+1)。

设f[i][j][k]f[i][j][k]表示打到第i列第j块砖,一共打了k块砖时所得的分数,则有f[i][j][k]=max(f[i][j][k],f[i+1][p][k−j](j−1≤p<n−i+1)+∑v=1ja[v][i])f[i][j][k]=max(f[i][j][k],f[i+1][p][k−j](j−1≤p<n−i+1)+∑v=1ja[v][i])。其中求第i列前v块砖之和可以直接预处理出来。因为求第i列时要用到第i+1列的东西,所以枚举i时应该从大到小。

P1437 [HNOI2004]敲砖块的更多相关文章

  1. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  2. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  3. yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块

    题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...

  4. 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)

    传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...

  5. luogu P1437 [HNOI2004]敲砖块

    三角形向右对齐后 你想打掉一个砖块,那么你必须打掉右上方的三角形,前缀和维护 若是第i列若是k个,那么它右边的那一列至少选了k-1个 f[i][j][k] 表示从后向前选到第 i 列第j个一共打了k次 ...

  6. Luogu 1437 [HNOI2004]敲砖块 (动态规划)

    Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...

  7. 【洛谷 P1437】 [HNOI2004]敲砖块 (DP)

    题目链接 毒瘤DP题 因为\((i,j)\)能不能敲取决于\((i-1,j)\)和\((i-1,j+1)\),所以一行一行地转移显然是有后效性的. 于是考虑从列入手.我们把这个三角形"左对齐 ...

  8. [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  9. 【题解】HNOI2004敲砖块

    题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...

随机推荐

  1. TextBlock 重写,当文本过长时,自动截断文本并出现Tooltip

    如下: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Syst ...

  2. 可执行文件patch技术&&持续更新

    前言 在ctf比赛中, 有时我们需要对可执行文件进行patch, 或者在植入后门时,patch也是常用的手段.不过手工patch比较麻烦,下面介绍几个工具.本文介绍遇到的各种技术,不断更新. ELF ...

  3. Hive命令 参数

    1.hive -h     显示帮助 2.hive -h hiveserverhost -p port     连接远程hive服务器 3.hive --define a=1 --hivevar b= ...

  4. owin Claims-based认证登录实现

    public override async Task GrantResourceOwnerCredentials(OAuthGrantResourceOwnerCredentialsContext c ...

  5. 观察者模式 - Java 实现1(使用JDK内置的Observer模式)

    使用JDK内置的观察者模式 1. 可观察者(主题) 被观察的主题继承 Observable 对象, 使用该对象的调用 notifyObservers() 或 notifyObservers(arg) ...

  6. spring boot(16)-mail发邮件

    上一篇讲了如何处理异常,并且异常最终会写入日志.但是日志是写在服务器上的,我们无法及时知道.如果能够将异常发送到邮箱,我们可以在第一时间发现这个异常.当然,除此以外,还可以用来给用户发验证码以及各种离 ...

  7. 安装启动apache2.4后报Invalid command 'order', perhaps misspelled or defined by a module not included

    httpd.conf中修改 重启Apache 报错. 在网上搜索了一下,大多是说mod_authz_host.so模块没有加载,但检查后发现httpd.conf中: 该模块并未被注释掉,那原因究竟出在 ...

  8. matlab用法总结

    1. Matlab怎么判断空矩阵http://www.ilovematlab.cn/thread-48915-1-1.html a=[ ] if isempty(a) 2.matlab寻找多个最大值位 ...

  9. 获取 docker 容器(container)的 ip 地址

    获取单个IP docker inspect --format '{{ .NetworkSettings.IPAddress }}'  <container-ID> 获取所有容器IP doc ...

  10. (1)List集合 (2)Queue集合 (3)Set集合

    1.List集合(重中之重)1.1 基本概念 java.util.List接口是Collection接口的子接口,该接口中元素有先后放入次序并允许重复 该接口的主要实现类:ArrayList类.Lin ...