xgboost使用
xgboost的实现方式为多颗CART树,其实xgboost就是类似于随机森林,但是与随机森林不同,他不是多个子树决策的结果,CART树最后会算出一个得分,是一个值,最后算出分类的时候,是多个值结合在一起用一个式子算出分类的。
这里只记录xgboost的使用方式:
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.datasets import make_hastie_10_2
from xgboost.sklearn import XGBClassifier
X, y = make_hastie_10_2(random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)##test_size测试集合所占比例
print(len(X_train[569]))
print(len(X_test))
clf = XGBClassifier(
silent=1 ,#设置成1则没有运行信息输出,最好是设置为0.是否在运行升级时打印消息。
#nthread=4,# cpu 线程数 默认最大
learning_rate= 0.3, # 如同学习率
min_child_weight=1,
# 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言
#,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。
#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。
max_depth=6, # 构建树的深度,越大越容易过拟合
gamma=0, # 树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。
subsample=1, # 随机采样训练样本 训练实例的子采样比
max_delta_step=0,#最大增量步长,我们允许每个树的权重估计。
colsample_bytree=1, # 生成树时进行的列采样
reg_lambda=1, # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
#reg_alpha=0, # L1 正则项参数
#scale_pos_weight=1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。平衡正负权重
#objective= 'multi:softmax', #多分类的问题 指定学习任务和相应的学习目标
#num_class=10, # 类别数,多分类与 multisoftmax 并用
n_estimators=100, #树的个数
seed=1000 #随机种子
#eval_metric= 'auc'
)
clf.fit(X_train,y_train,eval_metric='auc')
#设置验证集合 verbose=False不打印过程
clf.fit(X_train, y_train,eval_set=[(X_train, y_train), (X_test, y_test)],eval_metric='auc',verbose=False)
#获取验证集合结果
evals_result = clf.evals_result() y_pred = clf.predict(X_test)
y_true = y_test
clf.get_booster().save_model(r'/xgb.model')
booster = clf.get_booster() print(metrics.accuracy_score(y_true, y_pred))
#回归
xgboost使用的更多相关文章
- 搭建 windows(7)下Xgboost(0.4)环境 (python,java)以及使用介绍及参数调优
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgb ...
- 在Windows10 64位 Anaconda4 Python3.5下安装XGBoost
系统环境: Windows10 64bit Anaconda4 Python3.5.1 软件安装: Git for Windows MINGW 在安装的时候要改一个选择(Architecture选择x ...
- 【原创】xgboost 特征评分的计算原理
xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算: 而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的 ...
- Ubuntu: ImportError: No module named xgboost
ImportError: No module named xgboost 解决办法: git clone --recursive https://github.com/dmlc/xgboost cd ...
- windows下安装xgboost
Note that as of the most recent release the Microsoft Visual Studio instructions no longer seem to a ...
- xgboost原理及应用
1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT 地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboo ...
- xgboost
xgboost后面加了一个树的复杂度 对loss函数进行2阶泰勒展开,求得最小值, 参考链接:https://homes.cs.washington.edu/~tqchen/pdf/BoostedTr ...
- 【转】XGBoost参数调优完全指南(附Python代码)
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-g ...
- 【原创】Mac os 10.10.3 安装xgboost
大家用的比较多的是Linux和windows,基于Mac os的安装教程不多, 所以在安装的过程中遇到很多问题,经过较长时间的尝试,可以正常安装和使用, [说在前面]由于新版本的Os操作系统不支持op ...
- 机器学习(四)--- 从gbdt到xgboost
gbdt(又称Gradient Boosted Decision Tree/Grdient Boosted Regression Tree),是一种迭代的决策树算法,该算法由多个决策树组成.它最早见于 ...
随机推荐
- Linux操作系统文件系统基础知识详解
一 .Linux文件结构 文件结构是文件存放在磁盘等存贮设备上的组织方法.主要体现在对文件和目录的组织上. 目录提供了管理文件的一个方便而有效的途径. Linux使用标准的目录结构,在安装的时候,安装 ...
- codeforces 261B Maxim and Restaurant(概率DP)
B. Maxim and Restaurant time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- D3_book 11.1 pie
<!-- pie example --> <!DOCTYPE html> <meta charset="utf-8"> <style> ...
- fully delete project in Eclipse
选择你的项目(test)右击,选择delete——弹出框中勾选删除全部,如下如所示: 正常情况下,这样就能删除干净了,有时候你项目在运行,这时候你点击删除,那就会报下面的错误提示,虽然不会影响你其它项 ...
- Java菜鸟学习笔记(23)--继承篇(二):继承与组合
组合是什么 1.继承和组合都是一种随思想渗透而下的编码方式,其根本目的都是为了复用类,减少重复代码 2.要实现一个类的复用,可以分为组合语法和继承语法 3.组合就是通过将一个对象置于一个新类中,将其作 ...
- DBCC--LOG
DBCC LOGTo retrieve the transaction log for a given database.对应日志文件较大的数据库,慎用该命令Uasge:DBCC LOG(<db ...
- Windows2012 显示我的电脑删除群集
rundll32.exe shell32.dll,Control_RunDLL desk.cpl,,0 在正常删除Cluster 节点之后,再添加节点时,报“节点已经加入群集”,无法加入,注册表信息删 ...
- C# 委托和接口
能用委托解决的事情,接口也都可以解决.如下所示: public static void Main() { , , , }; Util.TransformAll(values, new Squarer( ...
- C#克隆
克隆方法是原型设计模式中必须使用的方式,它将返回一个与当前对象数据一致的对象.正如其名,犹如一个模子雕刻而出.克隆类型分为两种:浅克隆.深克隆. 1.浅克隆 浅克隆方式是最简单.最直接的方式.只需要类 ...
- JS 中的数据类型转换
转成字符串 String 1. 使用 toString方法 这种方法可以将 number, boolean, object,array,function 转化为字符串,但是无法转换 null, und ...