xgboost使用
xgboost的实现方式为多颗CART树,其实xgboost就是类似于随机森林,但是与随机森林不同,他不是多个子树决策的结果,CART树最后会算出一个得分,是一个值,最后算出分类的时候,是多个值结合在一起用一个式子算出分类的。
这里只记录xgboost的使用方式:
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.datasets import make_hastie_10_2
from xgboost.sklearn import XGBClassifier
X, y = make_hastie_10_2(random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)##test_size测试集合所占比例
print(len(X_train[569]))
print(len(X_test))
clf = XGBClassifier(
silent=1 ,#设置成1则没有运行信息输出,最好是设置为0.是否在运行升级时打印消息。
#nthread=4,# cpu 线程数 默认最大
learning_rate= 0.3, # 如同学习率
min_child_weight=1,
# 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言
#,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。
#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。
max_depth=6, # 构建树的深度,越大越容易过拟合
gamma=0, # 树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。
subsample=1, # 随机采样训练样本 训练实例的子采样比
max_delta_step=0,#最大增量步长,我们允许每个树的权重估计。
colsample_bytree=1, # 生成树时进行的列采样
reg_lambda=1, # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
#reg_alpha=0, # L1 正则项参数
#scale_pos_weight=1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。平衡正负权重
#objective= 'multi:softmax', #多分类的问题 指定学习任务和相应的学习目标
#num_class=10, # 类别数,多分类与 multisoftmax 并用
n_estimators=100, #树的个数
seed=1000 #随机种子
#eval_metric= 'auc'
)
clf.fit(X_train,y_train,eval_metric='auc')
#设置验证集合 verbose=False不打印过程
clf.fit(X_train, y_train,eval_set=[(X_train, y_train), (X_test, y_test)],eval_metric='auc',verbose=False)
#获取验证集合结果
evals_result = clf.evals_result() y_pred = clf.predict(X_test)
y_true = y_test
clf.get_booster().save_model(r'/xgb.model')
booster = clf.get_booster() print(metrics.accuracy_score(y_true, y_pred))
#回归
xgboost使用的更多相关文章
- 搭建 windows(7)下Xgboost(0.4)环境 (python,java)以及使用介绍及参数调优
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgb ...
- 在Windows10 64位 Anaconda4 Python3.5下安装XGBoost
系统环境: Windows10 64bit Anaconda4 Python3.5.1 软件安装: Git for Windows MINGW 在安装的时候要改一个选择(Architecture选择x ...
- 【原创】xgboost 特征评分的计算原理
xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算: 而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的 ...
- Ubuntu: ImportError: No module named xgboost
ImportError: No module named xgboost 解决办法: git clone --recursive https://github.com/dmlc/xgboost cd ...
- windows下安装xgboost
Note that as of the most recent release the Microsoft Visual Studio instructions no longer seem to a ...
- xgboost原理及应用
1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT 地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboo ...
- xgboost
xgboost后面加了一个树的复杂度 对loss函数进行2阶泰勒展开,求得最小值, 参考链接:https://homes.cs.washington.edu/~tqchen/pdf/BoostedTr ...
- 【转】XGBoost参数调优完全指南(附Python代码)
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-g ...
- 【原创】Mac os 10.10.3 安装xgboost
大家用的比较多的是Linux和windows,基于Mac os的安装教程不多, 所以在安装的过程中遇到很多问题,经过较长时间的尝试,可以正常安装和使用, [说在前面]由于新版本的Os操作系统不支持op ...
- 机器学习(四)--- 从gbdt到xgboost
gbdt(又称Gradient Boosted Decision Tree/Grdient Boosted Regression Tree),是一种迭代的决策树算法,该算法由多个决策树组成.它最早见于 ...
随机推荐
- Reactor 模式在Netty中的应用
Reactor 模式在Netty中的应用 典型的Rector模式 mainReactor 服务端创建成功后,会监听Accept操作,其中ServerSocketchannel中的PipeLine中现在 ...
- HDU1078 FatMouse and Cheese(DFS+DP) 2016-07-24 14:05 70人阅读 评论(0) 收藏
FatMouse and Cheese Problem Description FatMouse has stored some cheese in a city. The city can be c ...
- Java核心编程快速学习(转载)
http://www.cnblogs.com/wanliwang01/p/java_core.html Java核心编程部分的基础学习内容就不一一介绍了,本文的重点是JAVA中相对复杂的一些概念,主体 ...
- 第1章 敏捷思维—“互联网+”知识工作者必备的DNA
1.1 强化敏捷思维,落实“十三五”双创战略 史蒂夫·布兰克观察美国创业环境,提出创新生态四个方面:动机.管理工具.文化.基础建设,开创LLP创新创业模式. 1.2 现代敏捷管理发展趋势 1.敏捷 ...
- Spring Boot 2 实践记录之 组合注解原理
Spring 的组合注解功能,网上有很多文章介绍,不过都是介绍其使用方法,鲜有其原理解析. 组合注解并非 Java 的原生能力.就是说,想通过用「注解A」来注解「注解B」,再用「注解B」 来注解 C( ...
- Alwayson--辅助副本状态
1. 同步中(SYNCHRONIZING),主副本和辅助副本之间存在数据差异,并正在进行同步: 2. 已同步(SYNCHRONIZED),主副本和辅助副本之间不存在数据差异,无需要同步的日志: 3. ...
- leetcode 第三大的数
给定一个非空数组,返回此数组中第三大的数.如果不存在,则返回数组中最大的数.要求算法时间复杂度必须是O(n). 示例 1: 输入: [3, 2, 1] 输出: 1 解释: 第三大的数是 1. 示例 2 ...
- .net core 生成二维码
其实生成二维码的组件有很多种,如:QrcodeNet,ZKWeb.Fork.QRCoder,QRCoder等 我选QRCoder,是因为小而易用.支持大并发生成请求.不依赖任何库和网络服务. 既然是. ...
- 用idea做springboot开发,设置thymeleaf时候,新手容易忽略误区
最近小编因为工作原因需要完成工厂自动化改造,而思来想去觉得还是用Java开发,因为很久没有敲过代码,对java这块已经抛掉很多年.作为工厂自动开发或者大型企业级开发,个人认为java和C#会比较合适, ...
- Day 9 作业题(完成)
# 练习题# 1.整理函数相关知识点,画思维导图,写博客 # 2.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者.'''def func1(argv): f ...