Description

There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.

Input

There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.

Output

First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".

Sample Input

6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7

Sample Output

3 2 4 6

DLX:精确覆盖和反复覆盖。此题是精确覆盖。

学习资料;点击打开链接,看了一下午。加上bin神的模板。算是懂了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int maxnnode=100100;
const int maxn=1005 ;
const int mod = 1000000007;
struct DLX{
int n,m,size;
int U[maxnnode],D[maxnnode],L[maxnnode],R[maxnnode],Row[maxnnode],Col[maxnnode];
int H[maxn],S[maxn];
int ansd,ans[maxn];
void init(int a,int b)
{
n=a; m=b;
REPF(i,0,m)
{
S[i]=0;
U[i]=D[i]=i;
L[i]=i-1;
R[i]=i+1;
}
R[m]=0; L[0]=m;
size=m;
REPF(i,1,n)
H[i]=-1;
}
void link(int r,int c)
{
++S[Col[++size]=c];
Row[size]=r;
D[size]=D[c];
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0) H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
}
void remove(int c)
{
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
{
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
}
}
void resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
{
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
}
L[R[c]]=R[L[c]]=c;
}
bool Dance(int d)
{
if(R[0]==0)
{
ansd=d;
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
{
if(S[i]<S[c])//选择1的数量最少的
c=i;
}
remove(c);
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];
for(int j=R[i];j!=i;j=R[j]) remove(Col[j]);
if(Dance(d+1)) return true;
for(int j=L[i];j!=i;j=L[j]) resume(Col[j]);
}
resume(c);
return false;
}
};
DLX L;
int main()
{
int n,m;
int x,y;
while(~scanf("%d%d",&n,&m))
{
L.init(n,m);
REPF(i,1,n)
{
scanf("%d",&x);
while(x--)
{
scanf("%d",&y);
L.link(i,y);
}
}
if(!L.Dance(0)) printf("NO\n");
else
{
printf("%d",L.ansd);
REP(i,L.ansd)
printf(" %d",L.ans[i]);
printf("\n");
}
}
return 0;
}

HUST 1017 Exact cover(DLX精确覆盖)的更多相关文章

  1. (简单) HUST 1017 Exact cover , DLX+精确覆盖。

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  2. HUST 1017 - Exact cover (Dancing Links 模板题)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...

  3. Dancing Link --- 模板题 HUST 1017 - Exact cover

    1017 - Exact cover Problem's Link:   http://acm.hust.edu.cn/problem/show/1017 Mean: 给定一个由0-1组成的矩阵,是否 ...

  4. HUST 1017 Exact cover (Dancing links)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...

  5. [ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)

    DESCRIPTION There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  6. [HUST 1017] Exact cover

    Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6012 Solved: 3185 DESCRIP ...

  7. [DLX] hust 1017 Exact cover

    题意: 给你N个包,要拿到M个东西(编号1~M每一个仅仅能有一个) 然后每一个包里有k个东西,每一个东西都有编号. 思路: 舞蹈连模板题 代码: #include"stdio.h" ...

  8. HUST 1017 Exact cover dance links

    学习:请看 www.cnblogs.com/jh818012/p/3252154.html 模板题,上代码 #include<cstdio> #include<cstring> ...

  9. 搜索(DLX):HOJ 1017 - Exact cover

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6751 Solved: 3519 ...

随机推荐

  1. P2448 无尽的生命

    Description 小 a有一个长度无限长的序列 p = (1, 2, 3, 4 --),初始时 pi = i 给出 m 个操作,每次交换两个位置的数 询问最后序列逆序对的个数 Solution ...

  2. 关于在调用JAVAFX相关包时遇到Access restriction: The type 'Application' is not API (restriction on required library)的解决方法

    点击工具栏的Project->Properties->Java Build Path->Libraries-> 双击第一项 点击Add添加允许javafx 然后就不会报错了

  3. volatile 学习笔记

    全面理解Java内存模型(JMM)及volatile关键字 正确使用 Volatile 变量 Java内存模型 在并发编程中,需要处理两个关键问题:线程之间如何通信及线程之间如何同步.通信是指线程之间 ...

  4. FlumeNG介绍及安装部署

    本节内容: Flume简介 Flume NG核心组件 Flume部署种类 Flume单机安装 一.Flume简介 Flume是一个分布式.可靠.高可用的海量日志聚合系统,支持在系统中定制各类数据发送方 ...

  5. mysql远程访问 登录ERROR 1130: is not allowed to connect to this MySQL server解决办法

    LINUX6.3 里装了mysql5.0.18 版本运行服务器. 提示错误为: ERROR 1130: Host '192.168.0.102' is not allowed to connect t ...

  6. MFC+WinPcap编写一个嗅探器之五(过滤模块)

    这一节主要介绍如何获设置捕获过滤,这里的过滤是指在捕获前过滤 设置捕获过滤主要是在CFilterDlg中完成,也就是对应之前创建的设置过滤规则对话框,如图: 首先要根据用户的选择来生成一个合法的过滤规 ...

  7. CentOS7安装和配置mongodb3.6

    (1)安装mongodb 1.参考文档 https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/ 2.创建yum源 #v ...

  8. 大数据技术之_16_Scala学习_04_函数式编程-基础+面向对象编程-基础

    第五章 函数式编程-基础5.1 函数式编程内容说明5.1.1 函数式编程内容5.1.2 函数式编程授课顺序5.2 函数式编程介绍5.2.1 几个概念的说明5.2.2 方法.函数.函数式编程和面向对象编 ...

  9. Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) E. National Property(2-sat)

    E. National Property time limit per test 1 second memory limit per test 512 megabytes input standard ...

  10. Android 使用ViewPager 做的半吊子的图片轮播

    Android 使用ViewPager 做的半吊子的图片轮播 效果图 虽然不咋样,但是最起码的功能是实现了,下面我们来一步步的实现它. 界面 下面我们来分析一下界面的构成 整体的布局: 因为我们要做出 ...