Description

There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.

Input

There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.

Output

First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".

Sample Input

6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7

Sample Output

3 2 4 6

DLX:精确覆盖和反复覆盖。此题是精确覆盖。

学习资料;点击打开链接,看了一下午。加上bin神的模板。算是懂了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int maxnnode=100100;
const int maxn=1005 ;
const int mod = 1000000007;
struct DLX{
int n,m,size;
int U[maxnnode],D[maxnnode],L[maxnnode],R[maxnnode],Row[maxnnode],Col[maxnnode];
int H[maxn],S[maxn];
int ansd,ans[maxn];
void init(int a,int b)
{
n=a; m=b;
REPF(i,0,m)
{
S[i]=0;
U[i]=D[i]=i;
L[i]=i-1;
R[i]=i+1;
}
R[m]=0; L[0]=m;
size=m;
REPF(i,1,n)
H[i]=-1;
}
void link(int r,int c)
{
++S[Col[++size]=c];
Row[size]=r;
D[size]=D[c];
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0) H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
}
void remove(int c)
{
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
{
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
}
}
void resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
{
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
}
L[R[c]]=R[L[c]]=c;
}
bool Dance(int d)
{
if(R[0]==0)
{
ansd=d;
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
{
if(S[i]<S[c])//选择1的数量最少的
c=i;
}
remove(c);
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];
for(int j=R[i];j!=i;j=R[j]) remove(Col[j]);
if(Dance(d+1)) return true;
for(int j=L[i];j!=i;j=L[j]) resume(Col[j]);
}
resume(c);
return false;
}
};
DLX L;
int main()
{
int n,m;
int x,y;
while(~scanf("%d%d",&n,&m))
{
L.init(n,m);
REPF(i,1,n)
{
scanf("%d",&x);
while(x--)
{
scanf("%d",&y);
L.link(i,y);
}
}
if(!L.Dance(0)) printf("NO\n");
else
{
printf("%d",L.ansd);
REP(i,L.ansd)
printf(" %d",L.ans[i]);
printf("\n");
}
}
return 0;
}

HUST 1017 Exact cover(DLX精确覆盖)的更多相关文章

  1. (简单) HUST 1017 Exact cover , DLX+精确覆盖。

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  2. HUST 1017 - Exact cover (Dancing Links 模板题)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...

  3. Dancing Link --- 模板题 HUST 1017 - Exact cover

    1017 - Exact cover Problem's Link:   http://acm.hust.edu.cn/problem/show/1017 Mean: 给定一个由0-1组成的矩阵,是否 ...

  4. HUST 1017 Exact cover (Dancing links)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...

  5. [ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)

    DESCRIPTION There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  6. [HUST 1017] Exact cover

    Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6012 Solved: 3185 DESCRIP ...

  7. [DLX] hust 1017 Exact cover

    题意: 给你N个包,要拿到M个东西(编号1~M每一个仅仅能有一个) 然后每一个包里有k个东西,每一个东西都有编号. 思路: 舞蹈连模板题 代码: #include"stdio.h" ...

  8. HUST 1017 Exact cover dance links

    学习:请看 www.cnblogs.com/jh818012/p/3252154.html 模板题,上代码 #include<cstdio> #include<cstring> ...

  9. 搜索(DLX):HOJ 1017 - Exact cover

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6751 Solved: 3519 ...

随机推荐

  1. 夜神模拟器调试android studio项目

    这几天为了android studio也是醉了,先是R文件丢失忙活一下午,各种百度谷歌,最后终于解决这个小问题,没想到在启动avd这个问题上更是棘手,网上的方法试了,主要有三种,上篇博文http:// ...

  2. Codefroces 628B New Skateboard(数位+思维)

    题目链接:http://codeforces.com/contest/628/problem/B 题目大意:给你一段数字串s(1?≤?|s|?≤?3·10^5),求该字符串有多少子串是4的倍数.解题思 ...

  3. ROS数据可视化工具Rviz和三维物理引擎机器人仿真工具V-rep Morse Gazebo Webots USARSimRos等概述

    ROS数据可视化工具Rviz和三维物理引擎机器人仿真工具V-rep Morse Gazebo Webots USARSimRos等概述 Rviz Rviz是ROS数据可视化工具,可以将类似字符串文本等 ...

  4. How to detect whether socket is still connected...

    How to detect whether socket is still connected… */--> div.org-src-container { font-size: 85%; fo ...

  5. JDK安装及配置 (tar.gz版)和tomcat的安装

    jdk下载: 我们这里下载了jdk-8u65-linux-x64.tar.gz. 官网:http://www.oracle.com/technetwork/java/javase/downloads/ ...

  6. 20155225 2006-2007-2 《Java程序设计》第四周学习总结

    20155225 2006-2007-2 <Java程序设计>第四周学习总结 教材学习内容总结 对"是一种"语法测试几次之后,总结一句:满足"是一种" ...

  7. Asis CTF 2015-Car_Market

    恰好找到了这道题的bin文件,就来做一下. 这道题目是一个经典的选单程序但是具有三级选单,在bss段存在指针数组ptr,ptr中的值指向每个主结构,其中主结构如下所示. [] model [] pri ...

  8. iOS网络加载图片缓存与SDWebImage

    加载网络图片可以说是网络应用中必备的.如果单纯的去下载图片,而不去做多线程.缓存等技术去优化,加载图片时的效果与用户体验就会很差. 一.自己实现加载图片的方法 tips: *iOS中所有网络访问都是异 ...

  9. Ubuntu 17.10开启 root 登陆

    使用过 Ubuntu 的人都知道,Ubuntu 默认是不能以 root 登陆的,但是我们是不是就完全不能使用 root 进行登陆了呢?当然不是,只是我们需要做一些设置.而 Ubuntu 17.10 和 ...

  10. CCF CSP 201709-1 打酱油

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201709-1 打酱油 问题描述 小明带着N元钱去买酱油.酱油10块钱一瓶,商家进行促销,每买 ...