Description

题库链接

有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同。问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) 。

\(0\leq k\leq n\leq 1000000\)

Solution

设 \(f(n)\) 为交集元素大于 \(k\) 的方案数,设 \(g(n)\) 为交集元素等于 \(k\) 的方案数。

容易得到

\[f(k)=\sum_{i=k}^n{i\choose k}g(i)\Rightarrow g(k)=\sum_{i=k}^n(-1)^{i-k}{i\choose k}f(i)\]

并且 \(f(i)={n\choose i}2^{2^{n-i}}\) 。

直接求就好了。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 1000000+5, yzh = 1000000007; int n, k, ifac[N], fac[N], ans; int quick_pow(int a, int b, int p) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%p;
b >>= 1, a = 1ll*a*a%p;
}
return ans;
}
int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }
void work() {
scanf("%d%d", &n, &k);
fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
for (int i = 2; i <= n; i++) ifac[i] = -1ll*yzh/i*ifac[yzh%i]%yzh;
for (int i = 2; i <= n; i++)
fac[i] = 1ll*fac[i-1]*i%yzh, ifac[i] = 1ll*ifac[i]*ifac[i-1]%yzh;
for (int i = k; i <= n; i++)
if ((i-k)&1) (ans -= 1ll*C(i, k)*C(n, i)%yzh*quick_pow(2, quick_pow(2, n-i, yzh-1), yzh)%yzh) %= yzh;
else (ans += 1ll*C(i, k)*C(n, i)%yzh*quick_pow(2, quick_pow(2, n-i, yzh-1), yzh)%yzh) %= yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }

[BZOJ 2839]集合计数的更多相关文章

  1. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  2. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  3. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  4. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  5. ●BZOJ 2839 集合计数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...

  6. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

  7. bzoj 2839 集合计数——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...

  8. bzoj 2839 集合计数 —— 二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...

  9. bzoj 2839: 集合计数【容斥原理+组合数学】

    首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...

随机推荐

  1. Text Converted into Speech in Pi

    Step 1: Convert any text into uint8 type in matlab : Step 2: Add models in matlab : copy the uint8 n ...

  2. Swagger中显示注释

    Webapi中Swagger中不显示注解的解决方法 1.找见生成项目时候生成的xml文件.查看存放路劲方法: 右键项目-->点击属性-->在属性中选择“生成”就能看见xml文件存放路径: ...

  3. .Net Core 跨平台应用使用串口、串口通信 ,可能出现的问题、更简洁的实现方法

    前些天在学习在 .NET Core下,跨平台使用串口通讯,有一篇文章说到在Linux/物联网下,实现通讯. 主要问题出现在以下两个类库 SerialPortStream flyfire.CustomS ...

  4. shiro之深度解析FormAuthenticationFilter

      shiro是我们在项目经常使用到的权限管理框架,本文我们就重点来分析FormAuthenticationFilter的验证过程. FormAuthenticationFilter 1.继承结构   ...

  5. python django 更改模型字段出错时的一个解决办法

    python/django 框架自带的 orm 无疑是django框架最拿得出手的一个亮点,orm无疑极大的方便了项目的开发,提高了开发的效率. 在实际的项目开发过程中,我们有时候需要修改模型的字段, ...

  6. matplotlib实现三维柱状图

    matplotlib实现三维柱状图 import cv2 img = cv2.imread("1.png", 0) #特征点在图片中的坐标位置 m = 448 n = 392 im ...

  7. mybatis中单个参数的引用

    单个参数时在test条件中不能用参数名来引用,可以使用_parameter

  8. mysql8安装成功后忘记密码

    我安装的是社区免安装版,安装成功后密码忘记了.参考了网上的一些方法,自己也做下笔记.仅供参考. 我安装的mysql版本下载地址:https://dev.mysql.com/downloads/mysq ...

  9. iOS多线程---NSOperation介绍和使用

    1.  NSOperation实现多线程编程,需要和NSOperationQueue一起使用. (1)先将要执行的操作封装到NSOperation中 (2)将NSOperation对象添加到NSOpe ...

  10. OO第一单元作业

    第一次作业 类图:   复杂度: 圈复杂度的问题一直困扰着这三次作业,主要体现在求导方法中先判断符号导致出现过多判断语句,应该将整理符号放在一个新的类中处理. 第一次作业由于对面向对象的思维有些不理解 ...