P2144 [FJOI2007]轮状病毒

题目描述

轮状病毒有很多变种。许多轮状病毒都是由一个轮状基产生。一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成。2个原子之间的边表示这2个原子之间的信息通道,如图1。

n轮状病毒的产生规律是在n轮状基中删除若干边,使各原子之间有唯一一条信息通道。例如,共有16个不同的3轮状病毒,入图2所示。

给定n(N<=100),编程计算有多少个不同的n轮状病毒。

输入输出格式

输入格式:

第一行有1个正整数n。

输出格式:

将编程计算出的不同的n轮状病毒数输出

输入输出样例

输入样例#1: 复制

3
输出样例#1: 复制

16

Solution

然而正解是一系列看都看不懂的公式推导.....

可能老李给我们这道题是为了复习一下高精度八.....

于是他的目的达到了,大家果然都忘记叻!

那么首先打表找规律,打表程序见某位dalao,用并查集实现的超级暴力。

然后找规律,目前了解到有两种规律:1)以1、3开头的斐波拉契数列的平方,如果$n$是偶数减4,奇数不减。2)$f[i]=3f[i-1]-f[i-2]+2$

个人认为第一种比较好找,所以用的第一种。因为斐波拉契数列到后面非常大,所以写高精。

这里用了高精加、乘、减,乱搞搞就过了。

Code

#include<bits/stdc++.h>
using namespace std; int n; struct Node {
int a[], len;
}; Node mul(Node a, Node b) {
Node c;
memset(c.a, , sizeof(c.a));
for(int i = ; i <= a.len; i ++) {
int x = ;
for(int j = ; j <= b.len; j ++) {
c.a[i + j - ] = a.a[i] * b.a[j] + x + c.a[i + j - ];
x = c.a[i + j - ] / ;
c.a[i + j - ] %= ;
}
c.a[i + b.len] = x;
}
c.len = a.len + b.len;
while(c.a[c.len] == && c.len > ) c.len --;
return c;
} Node add(Node a, Node b) {
Node c;
memset(c.a, , sizeof(c.a));
for(int i = ; i <= max(a.len, b.len); i ++) {
int x = ;
c.a[i] = b.a[i] + a.a[i] + c.a[i];
x = c.a[i] / ;
c.a[i] %= ;
c.a[i + ] += x;
}
c.len = max(a.len, b.len) + ;
while(c.a[c.len] == && c.len > ) c.len --;
return c;
} Node sub(Node a, int x) {
Node c;
c.len = max(a.len, );
c.a[] = a.a[] - ;
for(int i = ; i <= c.len; i ++) c.a[i] = a.a[i];
for(int i = ; i <= c.len; i ++) {
if(c.a[i] < ) {
c.a[i + ] --;
c.a[i] = (c.a[i] + ) % ;
}
}
while(c.a[a.len] == && c.len > ) c.len --;
return c;
} void work() {
Node a, b, c;
memset(a.a, , sizeof(a.a));
memset(b.a, , sizeof(b.a));
a.len = b.len = ;
a.a[] = , b.a[] = ;
for(int i = ; i <= n; i ++) {
c = add(a, b);
swap(a, b); swap(b, c);
}
c = mul(b, b);
if(n % == )
c = sub(c, );
for(int i = c.len; i >= ; i --)
printf("%d", c.a[i]);
} int main() {
scanf("%d", &n);
if(n >= ) work();
if(n == ) printf("");
if(n == ) printf("");
return ;
}

【洛谷】2144:[FJOI2007]轮状病毒【高精度】【数学推导??(找规律)】的更多相关文章

  1. 洛谷 P2144 [FJOI2007]轮状病毒

    P2144 [FJOI2007]轮状病毒 题目描述 轮状病毒有很多变种.许多轮状病毒都是由一个轮状基产生.一个\(n\)轮状基由圆环上\(n\)个不同的基原子和圆心的一个核原子构成.\(2\)个原子之 ...

  2. 洛谷P2144 [FJOI2007]轮状病毒

    可以用Matrix-Tree定理,然而被卡精度 #include<cstdio> #include<cstdlib> #include<algorithm> #in ...

  3. 洛谷 P1014 Cantor表【蛇皮矩阵/找规律/模拟】

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  4. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

  5. 洛谷 P6914 - [ICPC2015 WF]Tours(割边+找性质)

    洛谷题面传送门 神仙题. 深夜写题解感受真好 我们考虑两个简单环 \(C_1,C_2\)​​​,我们假设颜色种类数为 \(k\)​​​,那么我们需要有 \(C_1,C_2\)​​​ 均符合条件,而由于 ...

  6. 洛谷 - P5000 - Hillwer编码 - 高精度

    https://www.luogu.org/problemnew/show/P5000 第一次写一个正经的高精度题. 很明显ASCII码的乘积绝对是溢出的. 那么直接上Java.正好学一手Java的字 ...

  7. 洛谷P1850 换教室_数学期望_Floyd

    调了一下午QAQ-让我对数学期望的理解又提升了一个层次. 首先,我们发现 v<=300v<=300v<=300 , 这样我们就可以用 FloydFloydFloyd 算法来 O(n3 ...

  8. 洛谷P1024 一元三次方程求解(数学)

    题意 题目链接 Sol 本来是一道好的公式题. 然后输出只要保留两位小数?? 直接上不就赢了嘛.. #include<bits/stdc++.h> #define LL long long ...

  9. [洛谷P4999]烦人的数学作业

    题目大意:定义$f(x)$表示$x$每一个数位(十进制)的数之和,求$\sum\limits_{i=l}^rf(i)$,多组询问. 题解:数位$DP$,可以求出每个数字的出现个数,再乘上每个数字的大小 ...

  10. 【洛谷】P1648 看守 (数学)

    题目链接 直接暴力搞\(O(n^2)\)显然是布星滴. 试想,若是一维,最远距离就是最大值减最小值. 现在推广到二维,因为有绝对值的存在,所以有四种情况 \((x1+y1) - (x2+y2), (x ...

随机推荐

  1. vue中使用localStorage存储信息

    一 什么是localStorage 对浏览器来说,使用 Web Storage 存储键值对比存储 Cookie 方式更直观,而且容量更大,它包含两种:localStorage 和 sessionSto ...

  2. Nginx/LVS/HAProxy负载均衡软件的优缺点详解【转】

    转自 (总结)Nginx/LVS/HAProxy负载均衡软件的优缺点详解http://www.ha97.com/5646.html PS:Nginx/LVS/HAProxy是目前使用最广泛的三种负载均 ...

  3. django Rest Framework----GenericAPIView 通用视图 GenericAPIView源码分析

    一.GenericAPIView GenericAPIView扩展了APIView,为标准列表和详细视图添加了常见的行为. 提供的每个具体通用视图都是一个GenericAPIView或多个mixin类 ...

  4. mysql高可用架构 -> MHA部署-04

    MHA架构图 本次MHA的部署基于GTID复制成功构建,普通主从复制也可以构建MHA架构. 下载所需的软件包 mkdir /server/tools -p //创建存放包的目录 [root@db01 ...

  5. tf.reduce_sum函数

    >>> x=[[1,2,3],[23,13,213]] >>> xx=tf.reduce_sum(x) >>> sess.run(xx) 255 ...

  6. 国内能用的NTP服务器及和标准源的偏差值

    中国境内可以使用的NTP服务器的IP地址,和泰福特服务器的时间偏差值,泰福特时钟服务器实时连接天线,测试前已经连接天线超过72小时 time-a.nist.gov 129.6.15.28 NIST, ...

  7. 洛谷P2261余数求和

    传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...

  8. CF529B 【Group Photo 2 (online mirror version)】

    贪心枚举最后方案中最大的h,设为maxh若某个人i的wi与hi均大于maxh,则此方案不可行若某个人恰有一个属性大于maxh,则可确定他是否换属性剩下的人按wi-hi从大到小排序后贪心选择O(nlog ...

  9. 20155225 2016-2017-2《Java程序设计》课程总结

    20155225 2016-2017-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:新的开始 预备作业2:C语言学习回顾 预备作业3:Linux基础入门和虚拟机的安装 第一 ...

  10. sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)

    Description In the two-player game "Two Ends", an even number of cards is laid out in a ro ...