题面

​ 题目的意思大概是给你一棵n个点的树, 求最少需要多少个多少个点, 整棵树都被覆盖(覆盖的意思是所有离被选中的点距离不大于k的点都视作已覆盖).

​ 考虑贪心(其实我考试的时候以为是道树形dp, 虽然说树形dp也是一种可行的方法, 但是估计全网应该没有一篇是这么做的...), 观察到最深的点, 若当前节点没有被覆盖, 则可以选择他的k级祖先, 因为选择<k级的祖先必然没有选择k级的祖先更优(单调不升), 如果没有k级父亲, 就选择根节点. 根据bfs序的倒序(从更深的点向更浅的点扫描), 一个个检查该节点是否被控制, 如果没有, 就去选择它的k级父亲, 接下来引用题解PPT中的一句话:我们令点i离最近的被驻扎的点的距离是d[i], 我们令f[i] = max(-1, k - d[i]). 选择的时候, 若周围的点的f[i]有变化, 就直接暴力更新周围点的状态, 大不了就是O(n)嘛...

​ 这样的话, 复杂度就是:

\[O(nk)
\]

​ 多好啊......

具体代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define N 100005
#define itn int
using namespace std; int n, K, t, head[N], stack[N], fa[N], cnt, top, f[N], ans;
struct node
{
itn to, next;
} edge[N << 1]; inline int read()
{
int x = 0, w = 1;
char c = getchar();
while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
return x * w;
} inline void add(int u, int v) { edge[++cnt].to = v; edge[cnt].next = head[u]; head[u] = cnt; } inline void bfs()
{
queue<int> q;
q.push(1); stack[++top] = 1;
while(!q.empty())
{
int u = q.front(); q.pop();
for(int i = head[u]; i; i = edge[i].next)
{
int v = edge[i].to; if(v == fa[u]) continue;
fa[v] = u; stack[++top] = v; q.push(v);
}
}
} inline void down(int u)
{
if(!f[u]) return;
for(int i = head[u]; i; i = edge[i].next)
{
int v = edge[i].to;
if(f[v] < f[u] - 1) { f[v] = f[u] - 1; down(v); }
}
} int main()
{
freopen("general.in", "r", stdin);
freopen("general.out", "w", stdout);
n = read(); K = read(); t = read();
for(int i = 1; i < n; i++)
{
int u = read(), v = read();
add(u, v); add(v, u);
}
if(K == 0) { printf("%d\n", n); return 0; }
bfs();
memset(f, -1, sizeof(f));
for(int i = n; i >= 1; i--)
{
if(f[stack[i]] == -1)
{
ans++;
int j = stack[i];
for(int k = K; k; k--) j = fa[j];
f[j] = K;
down(j);
}
}
printf("%d\n", ans);
return 0;
}

​ 实在是有问题就在下面说吧, 反正我也基本上不会回答...

[luogu3942] 将军令的更多相关文章

  1. luogu3942将军令

    https://www.zybuluo.com/ysner/note/1302132 题面 在大小为\(n\)的树上选择尽量少的点,使得所有未选择的点距离选择了的点小于等于\(k\). \(n\leq ...

  2. luogu3942 将军令 贪心

    题目大意:给你一个地图(树),共有1~n个驿站(点),编号分别为1~n,告诉你第ui个驿站与第vi个驿站有一条长度为1的路(边),每个小队(可以放在任意驿站上)最多有k的覆盖长度,问最多要放置多少个小 ...

  3. 洛谷 P3942 将军令 解题报告

    P3942 将军令 题目描述 又想起了四月. 如果不是省选,大家大概不会这么轻易地分道扬镳吧? 只见一个又一个昔日的队友离开了机房. 凭君莫话封侯事,一将功成万骨枯. 梦里,小\(F\)成了一个给将军 ...

  4. P3942 将军令

    P3942 将军令 梦里,小 F 成了一个给将军送密信的信使. 现在,有两封关乎国家生死的密信需要送到前线大将军帐下,路途凶险,时间紧迫.小 F 不因为自己的祸福而避趋之,勇敢地承担了这个任务. 不过 ...

  5. [洛谷P3942] 将军令

    洛谷题目链接:将军令 题目背景 历史/落在/赢家/之手 至少/我们/拥有/传说 谁说/败者/无法/不朽 拳头/只能/让人/低头 念头/却能/让人/抬头 抬头/去看/去爱/去追 你心中的梦 题目描述 又 ...

  6. 8.11 NOIP模拟测试17 入阵曲+将军令+星空

    T1 入阵曲 前缀和维护可以得60分 f[x1][y1][x2][y2]=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1];  O(n4) ...

  7. 【题解】将军令 Luogu P3942 (未完成)

    历史/落在/赢家/之手 至少/我们/拥有/传说 谁说/败者/无法/不朽 拳头/只能/让人/低头 念头/却能/让人/抬头 抬头/去看/去爱/去追 你心中的梦 将军令 题目描述 又想起了四月. 如果不是省 ...

  8. NOIP模拟测试17「入阵曲&#183;将军令&#183;星空」

    入阵曲 题解 应用了一种美妙移项思想, 我们先考虑在一维上的做法 维护前缀和$(sum[r]-sum[l-1])\%k==0$可以转化为 $sum[r]\% k==sum[l-1]\%k$开个桶维护一 ...

  9. noip模拟10[入阵曲·将军令·星空](luogu)

    对于这次考试来说,总体考得还是不错的 就是有一个小问题,特判一定要判对,要不然和不判一样,甚至错了还会挂掉30分 还有一个就是时间分配问题,总是在前几个题上浪费太多时间,导致最后一个题完全没有时间思考 ...

随机推荐

  1. POJ3087(KB1-G 简单搜索)

    Shuffle'm Up Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10366   Accepted: 4800 Des ...

  2. [js样式效果]具有停顿效果上下滚动方式

    一般用于公告的滚动效果 <!DOCTYPE HTML> <html> <head> <meta charset="gb2312" /> ...

  3. LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)

    题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \ ...

  4. JavaScript try-catch语句(错误处理)

    错误处理在处理程序设计中的重要性是毋庸置疑的,任何有影响力的web应用程序都需要一套完善的错误处理机制.当然,大多数佼佼者确实做到了这一点,但通常只有服务器端应用程序才能做到如此.实际上,服务器端团队 ...

  5. Django From组件 fields widgets

    一.Form组件之字段 Field required=True, 是否允许为空 widget=None, HTML插件 label=None, 用于生成Label标签或显示内容 initial=Non ...

  6. web前端要学哪些?

    本来是学java还有jsp这些东西的,后来毕业了就去找了个前端的工作:一开始就接触 nodejs+express+Angularjs+mongodb这些东西.不知道学了这些东西做前端够不够用.现在也就 ...

  7. Linux 环境下为VirtualBox安装增强功能

    VirtualBox安装CentOS后,再安装增强功能就可以共享文件夹.粘贴板以及鼠标无缝移动,主要步骤如下: 1.yum -y update 2.yum -y install g++ gcc gcc ...

  8. Docker 网络基础介绍

    [编者按]本文作者为 Mesosphere 开发大使 Michael Hausenblas,主要介绍配置 Docker 单主机网络的基本知识.文章系国内 ITOM 管理平台 OneAPM 编译呈现. ...

  9. Maven环境变量配置和在Eclipse中的配置

    1.Maven环境变量配置 M2_HOME :变量值为maven的安装目录 在path后添加%M2_HOME%\bin; 检查JDK,maven配置的cmd命令 echo %JAVA_HOME% ja ...

  10. php 打印

    php 打印功能需要printer.dll文件 扩展下载地址 http://downloads.php.net/pierre/ 这里有很多PHP的扩展