考虑差分序列。每个差分序列的贡献是n-差分序列的和,即枚举首项。将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和。显然每一个数出现次数是相同的,所以cnt(i)即等于(k-1)*mk-2。于是就很好算了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int m,k,p;ll n;
ll ksm(ll a,ll k)
{
if (k==) return ;
ll tmp=ksm(a,k>>);
if (k&) return tmp*tmp%p*a%p;
else return tmp*tmp%p;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3142.in","r",stdin);
freopen("bzoj3142.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
cin>>n>>k>>m>>p;k--;
cout<<(n%p*ksm(m,k)%p-(k?1ll*m*(m+)/%p*ksm(m,k-)%p*k%p:)+p)%p;
return ;
}

BZOJ3142 HNOI2013数列(组合数学)的更多相关文章

  1. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  2. BZOJ3142 [Hnoi2013]数列 【组合数学】

    题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...

  3. BZOJ3142 [Hnoi2013]数列

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  4. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  5. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

  6. bzoj3142[Hnoi2013]数列 组合

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  7. Luogu P3228 HNOI2013 数列 组合数学

    题面 看了题解的推导发现其实并不复杂,但是如果你想要用多项式或者组合数求解的话,就GG了 其实如果把式子列出来的话,不需要怎么推导就能算出来,关键是要想到这个巧妙的式子. 设\(b_i=a_{i+1} ...

  8. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  9. 【BZOJ3142】[HNOI2013]数列

    [BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...

随机推荐

  1. 随机游走模型(RandomWalk Mobility)

    随机游走模型由首先由爱因斯坦在1926年以数学方式描述.由于自然界中的许多实体会以不可预知的方式移动,因此随机游走模型用来描述这种不稳定的移动.在这种移动模型中,移动节点随机选择一个方向和速度来从当前 ...

  2. HT7A6312—— 离线开关电源小功率初级转换开关IC 记录总结

    1. 芯片特性 a. 固定60KHz开关频率: b. 宽Vcc输出电压范围:9V - 38V: c. 宽交流输入电压范围:85Vac - 265Vac: d. 电流模式PWM控制: e. 带迟滞的辅助 ...

  3. SQL常见面试题

    1.用一条SQL 语句 查询出每门课都大于80 分的学生姓名 name   kecheng   fenshu张三    语文       81张三     数学       75李四     语文   ...

  4. linux镜像(持续更新)

    Linux系统历史衍生图:https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg ubu ...

  5. python自动化17-JS处理滚动条

    前言 selenium并不是万能的,有时候页面上操作无法实现的,这时候就需要借助JS来完成了. 常见场景: 当页面上的元素超过一屏后,想操作屏幕下方的元素,是不能直接定位到,会报元素不可见的. 这时候 ...

  6. php js css加载合并函数 宋正河整理

    <?php //php js css加载合并函数 宋正河整理 //转载请注明出处 define('COMBINE_JS',true); define('COMBINE_CSS',true);   ...

  7. Django 前后端不分离 代码结构详解

    Demo:  hello_pycharm 根目录文件:hello_pycharm [__init__.py  __pycache__  settings.py  urls.py  wsgi.py] A ...

  8. spring 在ssh三大框架中充当的角色

    https://blog.csdn.net/yeah_nn/article/details/79992777

  9. 快速删除docker中的容器

    http://blog.csdn.net/cmzsteven/article/details/49230363

  10. 树莓派 Raspberry-Pi 折腾系列:系统安装及一些必要的配置

    入手树莓派将近一个月了,很折腾,许多资源不好找,也很乱.简单整理一下自己用到的东西,方便以后自己或别人继续折腾. 0. 操作系统下载 树莓派官方 Raspbian 系统下载:http://www.ra ...