BZOJ3142 HNOI2013数列(组合数学)
考虑差分序列。每个差分序列的贡献是n-差分序列的和,即枚举首项。将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和。显然每一个数出现次数是相同的,所以cnt(i)即等于(k-1)*mk-2。于是就很好算了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int m,k,p;ll n;
ll ksm(ll a,ll k)
{
if (k==) return ;
ll tmp=ksm(a,k>>);
if (k&) return tmp*tmp%p*a%p;
else return tmp*tmp%p;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3142.in","r",stdin);
freopen("bzoj3142.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
cin>>n>>k>>m>>p;k--;
cout<<(n%p*ksm(m,k)%p-(k?1ll*m*(m+)/%p*ksm(m,k-)%p*k%p:)+p)%p;
return ;
}
BZOJ3142 HNOI2013数列(组合数学)的更多相关文章
- [BZOJ3142][HNOI2013]数列(组合数学)
3142: [Hnoi2013]数列 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1721 Solved: 854[Submit][Status][ ...
- BZOJ3142 [Hnoi2013]数列 【组合数学】
题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...
- BZOJ3142 [Hnoi2013]数列
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- bzoj千题计划293:bzoj3142: [Hnoi2013]数列
http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...
- [BZOJ3142][HNOI2013]数列(组合)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...
- bzoj3142[Hnoi2013]数列 组合
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- Luogu P3228 HNOI2013 数列 组合数学
题面 看了题解的推导发现其实并不复杂,但是如果你想要用多项式或者组合数求解的话,就GG了 其实如果把式子列出来的话,不需要怎么推导就能算出来,关键是要想到这个巧妙的式子. 设\(b_i=a_{i+1} ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ3142】[HNOI2013]数列
[BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...
随机推荐
- 把模块有关联的放在一个文件夹中 在python2中调用文件夹名会直接失败 在python3中调用会成功,但是调用不能成功的解决方案
把模块有关联的放在一个文件夹中 在python2中调用文件夹名会直接失败在python3中调用会成功,但是调用不能成功 解决办法是: 在该文件夹下加入空文件__init__.py python2会把该 ...
- pandas安装以及出现的问题
pandas安装以及出现的问题 1.pandas 安装 pandas是Python的第三方库,所以使用前需要安装一下,直接使用pip install pandas就会自动安装,安装成功后显示的以下的信 ...
- Python 之Memcache中间件
一.引子 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载,它通过在内存中缓存数据和减少读取数据库的次数,从而提高动态数据库驱动网站的速度.Memcache ...
- SICP读书笔记 2.3
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- 比较undefined和“undefined”
说实话,它们之间的区别挺明显的,我们一般认为undefined是JavaScript提供的一个“关键字”,而“undefined”却是一个字符串,只是引号的内容和undefined一样. undefi ...
- PLSQL面向对象
```sql --定义可被SQL语句调用的子程序 create or replace function getempdept( p_empno emp.empno%type )return ...
- Java中 static、final和static final的特点及区别
final: final可以修饰:属性,方法,类,局部变量(方法中的变量) final修饰的属性的初始化可以在编译期,也可以在运行时,初始化后不能被改变. final修饰的属性跟具体对象有关,在运行期 ...
- 占位符golang
定义示例类型和变量 type Human struct { Name string } var people = Human{Name:"zhangsan"} 普通占位符 占位符 ...
- [T-ARA/超新星][TTL (Time To Love)]
歌词来源:http://music.163.com/#/song?id=5403002 作曲 : 金道勋 [作曲 : 金道勋] 作词 : Rhymer/Joosuc/황성진 [作词 : Rhymer/ ...
- uniq命令详解
基础命令学习目录首页 原文链接:http://man.linuxde.net/uniq 删除重复行: uniq file.txt sort file.txt | uniq sort -u file.t ...