【BZOJ4036】按位或(Min-Max容斥,FWT)
【BZOJ4036】按位或(Min-Max容斥,FWT)
题面
题解
很明显直接套用\(min-max\)容斥。
设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的期望,\(min\)同理。
那么\(E(max\{S\})=\sum_{T\subseteq S}(-1)^{|T|}E(min\{T\})\)
考虑怎么求\(E(min\{T\})\),很容易发现只需要或上了任何一位就行了。
也就是
\]
只需要任意一个和\(T\)存在交的集合\(G\)就会产生至少一个位。
现在的问题转换成了怎么求任何一个和\(T\)有交的东西。
正难则反,求所有和\(T\)无交集的集合,设\(x=T\oplus(2^n-1)\),也就是\(T\)的补集。
显然所有的与\(T\)无交集的集合都是\(x\)的子集,那么只需要预处理子集和就好了,\(FWT\)实现。
时间复杂度\(O(2^n n)\),代码短的不行。
#include<cstdio>
int n,cnt[1<<20],N;
double P[1<<20],ans;
int main()
{
scanf("%d",&n);N=1<<n;
for(int i=0;i<N;++i)scanf("%lf",&P[i]),cnt[i]=cnt[i>>1]+(i&1);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
P[i+j+k]+=P[j+k];
for(int i=1;i<N;++i)if(1-P[(N-1)^i]>1e-8)ans+=((cnt[i]&1)?1:-1)/(1-P[(N-1)^i]);
if(ans<1e-10)puts("INF");else printf("%.10lf\n",ans);
return 0;
}
【BZOJ4036】按位或(Min-Max容斥,FWT)的更多相关文章
- bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】
其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...
- P3175-[HAOI2015]按位或【min-max容斥,FWT】
正题 题目链接:https://www.luogu.com.cn/problem/P3175 题目大意 开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s ...
- 「PKUWC2018」随机游走(min-max容斥+FWT)
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...
- BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...
- [HAOI2015]按位或(min-max容斥,FWT,FMT)
题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...
- BZOJ4036:按位或 (min_max容斥&高维前缀和)
Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...
- 【洛谷U20626】gemo 容斥 FWT 高斯消元
题目大意 给你一个无向图,有\(m\)个询问,每次给你一个点\(x\)和一个点集\(S\),问你从\(x\)开始走,每次从一个点随机的走到与这个点相邻的点,问你访问\(S\)中每个点至少一次的期望步数 ...
- 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)
题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...
- Min-max 容斥与 kth 容斥
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...
随机推荐
- shell解析ini格式文件
功能 本脚本实现了ini文件中的查询修改指定value 百度云连接地址 链接:https://pan.baidu.com/s/12_T5yST7Y3L1H4_MkVEcvA 密码:fo5p 解压后先看 ...
- markdown | Latex | 书写测试
我永远喜欢markdown! 建图 graph TD; 1-->2 1-->3 1-->4 2-->5 2-->6 3-->7 3-->8 4-->9 ...
- Nginx中server_name 参数详解
Nginx中的server_name指令主要用于配置基于名称的虚拟主机,server_name指令在接到请求后的匹配顺序分别为: 1.准确的server_name匹配,例如: server { lis ...
- “Hello World!”团队第五周第七次会议
博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout&push代码 一.会议时间 2017年11月16日 ...
- Scrum Meeting 11.11
成员 今日任务 明日计划 用时 徐越 学习UI设计并重构上传下载界面 赵庶宏 薄霖 UI代码更新 卞忠昊 Xfermode与PorterDuff 武鑫 界面设计:独 ...
- Team饭来了团队作业3需求改进与系统设计
团队名称:饭来了 人员组成: 队长:侯晓东 学号:2016012087 队员:崔啸寒 学号:2016012006 队员:方柱权 学号:201601 ...
- IO流的各种继承关系
- ABP ModuleZero后台框架materialize禁止模拟select和checkbox
使用abp modulezero自带那个后台框架发现一个操蛋的问题,所有的select和checkbox都被改成div模拟的,虽然比原生美观,但有时候真的很难用. 比如说要用select做一个联动菜单 ...
- 安装mysql后遇到的一些问题
我们安装好了mysql(cnetos7上是安装mariadb)后,出现如下图所示的问题,我们可以用netstat -lntup查看以下服务器的端口,mysql的端口一般默认为 3306,查看服务是否启 ...
- 项目复审—Alpha阶段
项目复审-Alpha阶段 小组的名字和链接 优 点 缺 点 排名 [别看了你没救队]http://www.cnblogs.com/liaoyujun233/p/9016362.html 此队优点很多, ...