【BZOJ4036】按位或(Min-Max容斥,FWT)

题面

BZOJ

洛谷

题解

很明显直接套用\(min-max\)容斥。

设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的期望,\(min\)同理。

那么\(E(max\{S\})=\sum_{T\subseteq S}(-1)^{|T|}E(min\{T\})\)

考虑怎么求\(E(min\{T\})\),很容易发现只需要或上了任何一位就行了。

也就是

\[E(min\{T\})=\frac{1}{\sum_{G\cap T\neq \phi }p[G]}
\]

只需要任意一个和\(T\)存在交的集合\(G\)就会产生至少一个位。

现在的问题转换成了怎么求任何一个和\(T\)有交的东西。

正难则反,求所有和\(T\)无交集的集合,设\(x=T\oplus(2^n-1)\),也就是\(T\)的补集。

显然所有的与\(T\)无交集的集合都是\(x\)的子集,那么只需要预处理子集和就好了,\(FWT\)实现。

时间复杂度\(O(2^n n)\),代码短的不行。

#include<cstdio>
int n,cnt[1<<20],N;
double P[1<<20],ans;
int main()
{
scanf("%d",&n);N=1<<n;
for(int i=0;i<N;++i)scanf("%lf",&P[i]),cnt[i]=cnt[i>>1]+(i&1);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
P[i+j+k]+=P[j+k];
for(int i=1;i<N;++i)if(1-P[(N-1)^i]>1e-8)ans+=((cnt[i]&1)?1:-1)/(1-P[(N-1)^i]);
if(ans<1e-10)puts("INF");else printf("%.10lf\n",ans);
return 0;
}

【BZOJ4036】按位或(Min-Max容斥,FWT)的更多相关文章

  1. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  2. P3175-[HAOI2015]按位或【min-max容斥,FWT】

    正题 题目链接:https://www.luogu.com.cn/problem/P3175 题目大意 开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s ...

  3. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  4. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  5. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  6. BZOJ4036:按位或 (min_max容斥&高维前缀和)

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

  7. 【洛谷U20626】gemo 容斥 FWT 高斯消元

    题目大意 给你一个无向图,有\(m\)个询问,每次给你一个点\(x\)和一个点集\(S\),问你从\(x\)开始走,每次从一个点随机的走到与这个点相邻的点,问你访问\(S\)中每个点至少一次的期望步数 ...

  8. 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)

    题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...

  9. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...

随机推荐

  1. python包管理工具pip

    你可以使用一个名为 pip 的程序来安装.升级和移除软件包.默认情况下 pip 将从 Python Package Index <https://pypi.org> 安装软件包.你可以在浏 ...

  2. Android工程导入Unity3D(避坑版)

    最近与各种牛逼的项目管理软件打交道,比如SourceTree,要看英文版的才看得懂,中文反而不会用!... 这篇博客适合没怎么接触过安卓的小伙伴们,网上也有很多相关的教程,但是大多都没有具体的操作或则 ...

  3. [SimHash] the Hash-based Similarity Detection Algorithm

    The current information explosion has resulted in an increasing number of applications that need to ...

  4. md5sum命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/cbbbc/article/details/48563023 前言 在网络传输.设备之间转存.复制大文件等时,可能会出现传输 ...

  5. 定时任务crone表达式demo

    1. cron表达式格式: {秒数} {分钟} {小时} {日期} {月份} {星期} {年份(可为空)} 2. cron表达式各占位符解释: {秒数} ==> 允许值范围: 0~59 ,不允许 ...

  6. R语言安装R package的2种方法

    http://www.cnblogs.com/emanlee/archive/2012/12/05/2803606.html

  7. 《Spring2之站立会议7》

    <Spring2之站立会议7> 昨天,查相关资料解决debug:: 今天,解决了debug: 遇到问题,一些问题是得到解决了,但是一些还未被解决.

  8. bata5

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:恺琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  9. 作业45//Calculator::3.0

    计算器 github 我的天我到底要写什么 一,2.0及2.6的改动 做了计算部分 加入了判断输入是否合法 合法的定义是算式符合`数字+运算符+数字+运算符+数字`的格式 其中`"-&quo ...

  10. BETA-3

    前言 我们居然又冲刺了·三 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 一堆deadline截至前的两天,为了图形学和编译原理毅然决然地放弃冲刺 接下 ...