[NOI2014]魔法森林 LCT
题面
题解
一条路径的代价为路径上的\(max(a[i]) + max(b[i])\),因为一条边同时有$a[i], b[i]$2种权值,直接处理不好同时兼顾到,所以我们考虑一个暴力的做法。
一个暴力的做法:
我们枚举\(max(a[i])\),然后强制只能选满足这个限制的边,那么此时\(a[i]\)就已经不用管了,只需要最小化\(max(b[i])\)即可。
因此我们求一下最小生成树,然后看一下这条路径的\(max(b[i])\)就可以了。
一个小优化:
考虑如果我们枚举到一些不存在的\(max(a[i])\),显然是没用的,因此我们只需要枚举\(a[i]\)最大可以取到与哪条边的\(a[i]\)相等即可。
一个大优化:
注意到我们每枚举一次就重建最小生成树太亏了,毕竟我们有这样一个结论:
集合内多加一条边然后求最小生成树,这个新的最小生成树一定是在原来最小生成树基础上多加一条边构成的。
因此我们将新加入集合的边依次拿来尝试更新原来的最小生成树。
考虑怎么维护。
强行加入一条x到y的边后,原来的最小生成树将会变成一个基环树,因此我们要舍弃一条边。
我们在原来最小生成树上查询x到y路径上的最大值,看是否比当前加入的边大,如果比当前加入的边大,那么我们就断开那条最大的边,然后加入当前加入的边,否则就不做修改。
但是查询边的最大值不太好处理,我们可以将一条边视作一个点,然后连x ---> y 就连x ---> tmp ---> y,其中tmp为边的编号,然后断开的时候也断2条边。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 200000
#define inf 100000000
int n, m, ans = inf, top;
int maxn[AC], pos[AC], rev[AC], son[AC][2], fa[AC], val[AC];
int father[AC], q[AC];
struct node{
int x, y, a, b;
}way[AC];
inline bool cmp(node a, node b) {return a.a < b.a;}
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
inline void upmax(int &a, int b) {if(b > a) a = b;}
inline void upmin(int &a, int b) {if(b < a) a = b;}
inline int find(int x)
{
if(father[x] == x) return x;
else return father[x] = find(father[x]);
}
struct Link_Cut_Tree{
void pushdown(int x)
{
if(!rev[x]) return ;
rev[son[x][0]] ^= 1, rev[son[x][1]] ^= 1;
swap(son[x][0], son[x][1]), rev[x] = 0;//别忘了换儿子,之前还没换的
}
bool is_root(int x) {return (son[fa[x]][1] != x) && (son[fa[x]][0] != x);}
void update(int x)
{
int tmp = (maxn[son[x][0]] > maxn[son[x][1]]) ? son[x][0] : son[x][1];
if(val[x] > maxn[tmp]) maxn[x] = val[x], pos[x] = x;
else maxn[x] = maxn[tmp], pos[x] = pos[tmp];
}
void rotate(int x)
{
int y = fa[x], z = fa[y], k = son[y][1] == x;
if(!is_root(y)) son[z][son[z][1] == y] = x;
fa[x] = z, fa[son[x][k ^ 1]] = y, son[y][k] = son[x][k ^ 1];
fa[y] = x, son[x][k ^ 1] = y, update(y), update(x);
}
void splay(int x)
{
q[top = 1] = x;
for(R i = x; fa[i]; i = fa[i]) q[++ top] = fa[i];
while(top) pushdown(q[top]), -- top;
while(!is_root(x))
{
int y = fa[x], z = fa[y];
if(!is_root(y)) (son[y][1] == x) ^ (son[z][1] == y) ? rotate(x) : rotate(y);
rotate(x);
}
}
void access(int x)
{for(R i = 0; x; i = x, x = fa[x]) splay(x), son[x][1] = i, update(x);}
void make_root(int x) {access(x), splay(x), rev[x] ^= 1;}
void split(int x, int y) {make_root(x), access(y), splay(y);}
int get_rot(int x)
{
access(x), splay(x);
while(son[x][0]) x = son[x][0];
return x;
}
void link(int x, int y)
{
int xx = get_rot(x), yy = get_rot(y);
if(xx == yy) return ;
make_root(x), fa[x] = y;
}
void cut(int x, int y)
{
int xx = get_rot(x), yy = get_rot(y);
if(xx != yy) return ;
split(x, y);//split后默认y在最上面,x在y左边
if(!son[x][1] && !son[x][0]) son[y][0] = 0, fa[x] = 0;
}
void insert(int i)
{
int x = way[i].x, y = way[i].y, fx = find(x), fy = find(y);
if(fx != fy)
{
link(x, n + i), link(n + i, y);
if(fx > fy) swap(fx, fy);
father[fy] = fx;
}
else
{
split(x, y);
if(maxn[y] <= val[n + i]) return ;
int tmp = pos[y];
//son[tmp][0] = son[tmp][1] = fa[tmp] = 0;//把这个点删掉
cut(way[tmp - n].x, tmp), cut(tmp, way[tmp - n].y);//应该是断开和这条边相邻的点
link(x, n + i), link(n + i, y);
}
if(find(1) == find(n)) split(1, n), upmin(ans, way[i].a + maxn[n]);
}
}LCT;
void pre()
{
n = read(), m = read();
for(R i = 1; i <= n; i ++) father[i] = i;
for(R i = 1; i <= m; i ++)
way[i].x = read(), way[i].y = read(), way[i].a = read(), way[i].b = read();
sort(way + 1, way + m + 1, cmp);
}
void work()
{
for(R i = 1; i <= m; i ++) val[n + i] = way[i].b, LCT.insert(i);
if(ans != inf) printf("%d\n", ans);
else printf("-1\n");
}
int main()
{
freopen("in.in", "r", stdin);
pre();
work();
fclose(stdin);
return 0;
}
[NOI2014]魔法森林 LCT的更多相关文章
- BZOJ 3669: [Noi2014]魔法森林( LCT )
排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...
- bzoj 3669: [Noi2014]魔法森林 (LCT)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec ...
- loj2245 [NOI2014]魔法森林 LCT
[NOI2014]魔法森林 链接 loj 思路 a排序,b做动态最小生成树. 把边拆成点就可以了. uoj98.也许lct复杂度写假了..越卡常,越慢 代码 #include <bits/std ...
- bzoj3669: [Noi2014]魔法森林 lct版
先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...
- 【BZOJ3669】[Noi2014]魔法森林 LCT
终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...
- bzoj 3669: [Noi2014] 魔法森林 LCT版
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...
- P2387 [NOI2014]魔法森林 LCT维护最小生成树
\(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 ...
- 洛谷P2387 [NOI2014]魔法森林(LCT)
魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...
随机推荐
- python3安装与环境配置和pip的基本使用
本文环境 系统: Windows10 Python版本: 3.6 安装 python安装包下载 可以选择安装版和解压版 安装版一键安装, 安装过程注意选择安装位置, xx To Path选项(勾选), ...
- docker 一篇文章学习容器化
什么是镜像?什么是容器? 一句话回答:镜像是类,容器是实例 docker 基本操作命令: 删除所有container: docker rm $(docker ps -a -q) 删 ...
- 1.VBA 基本概念——《Excel VBA 程序开发自学宝典》
1.1 常见对象及含义 对象名 含义 application 整个Excel应用程序 window 窗口 worksheet 一个工作表 sheets 指定工作簿的所有工作表的合集 shaperan ...
- Java字符串分割
java中字符串的分割函数,split("你想要分割的字符", 你想要最多分割为多少段,正整数) 注意事项: 1.分割特殊字符考虑转义字符的使用.如: . \ | 2.第二个参数: ...
- 小程序与WebRTC联姻能擦出怎样的火花?
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯视频云终端团队发表于云+社区专栏 腾讯视频云终端技术总监,rexchang(常青), 2008 年毕业加入腾讯,一直从事客户端研发 ...
- dos2unix命令详解
基础命令学习目录首页 原文链接:https://blog.csdn.net/leedaning/article/details/53024290 使用git 的时候碰到git将unix换行符转换为wi ...
- 兼容所有浏览器的旋转效果-IE滤镜Matrix和CSS3transform
在现代浏览器中使用CSS3的transform样式即可轻松搞定,但是对于国内IE浏览器(特别是7,8)还占有较大份额的情况下,兼容性还是必须要考虑的,所以也特意记录下IE旋转滤镜的使用. 在IE下的旋 ...
- LeetCode 174. Dungeon Game (C++)
题目: The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dung ...
- java BufferedWriter写数据不完全
package com.brucekun.keyword; import java.io.BufferedReader; import java.io.BufferedWriter; import j ...
- spring冲刺第八天
昨天使人物成功的在地图上运动,并设计炸弹爆炸效果. 今天使炸弹可以炸死人物并可以炸没砖块,并试着将小怪加入地图. 遇到的问题:现在还没有将小怪加入地图,各个模块的整合是比较麻烦的,我还要在这方面下点功 ...