[NOI2014]魔法森林 LCT
题面
题解
一条路径的代价为路径上的\(max(a[i]) + max(b[i])\),因为一条边同时有$a[i], b[i]$2种权值,直接处理不好同时兼顾到,所以我们考虑一个暴力的做法。
一个暴力的做法:
我们枚举\(max(a[i])\),然后强制只能选满足这个限制的边,那么此时\(a[i]\)就已经不用管了,只需要最小化\(max(b[i])\)即可。
因此我们求一下最小生成树,然后看一下这条路径的\(max(b[i])\)就可以了。
一个小优化:
考虑如果我们枚举到一些不存在的\(max(a[i])\),显然是没用的,因此我们只需要枚举\(a[i]\)最大可以取到与哪条边的\(a[i]\)相等即可。
一个大优化:
注意到我们每枚举一次就重建最小生成树太亏了,毕竟我们有这样一个结论:
集合内多加一条边然后求最小生成树,这个新的最小生成树一定是在原来最小生成树基础上多加一条边构成的。
因此我们将新加入集合的边依次拿来尝试更新原来的最小生成树。
考虑怎么维护。
强行加入一条x到y的边后,原来的最小生成树将会变成一个基环树,因此我们要舍弃一条边。
我们在原来最小生成树上查询x到y路径上的最大值,看是否比当前加入的边大,如果比当前加入的边大,那么我们就断开那条最大的边,然后加入当前加入的边,否则就不做修改。
但是查询边的最大值不太好处理,我们可以将一条边视作一个点,然后连x ---> y 就连x ---> tmp ---> y,其中tmp为边的编号,然后断开的时候也断2条边。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 200000
#define inf 100000000
int n, m, ans = inf, top;
int maxn[AC], pos[AC], rev[AC], son[AC][2], fa[AC], val[AC];
int father[AC], q[AC];
struct node{
int x, y, a, b;
}way[AC];
inline bool cmp(node a, node b) {return a.a < b.a;}
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
inline void upmax(int &a, int b) {if(b > a) a = b;}
inline void upmin(int &a, int b) {if(b < a) a = b;}
inline int find(int x)
{
if(father[x] == x) return x;
else return father[x] = find(father[x]);
}
struct Link_Cut_Tree{
void pushdown(int x)
{
if(!rev[x]) return ;
rev[son[x][0]] ^= 1, rev[son[x][1]] ^= 1;
swap(son[x][0], son[x][1]), rev[x] = 0;//别忘了换儿子,之前还没换的
}
bool is_root(int x) {return (son[fa[x]][1] != x) && (son[fa[x]][0] != x);}
void update(int x)
{
int tmp = (maxn[son[x][0]] > maxn[son[x][1]]) ? son[x][0] : son[x][1];
if(val[x] > maxn[tmp]) maxn[x] = val[x], pos[x] = x;
else maxn[x] = maxn[tmp], pos[x] = pos[tmp];
}
void rotate(int x)
{
int y = fa[x], z = fa[y], k = son[y][1] == x;
if(!is_root(y)) son[z][son[z][1] == y] = x;
fa[x] = z, fa[son[x][k ^ 1]] = y, son[y][k] = son[x][k ^ 1];
fa[y] = x, son[x][k ^ 1] = y, update(y), update(x);
}
void splay(int x)
{
q[top = 1] = x;
for(R i = x; fa[i]; i = fa[i]) q[++ top] = fa[i];
while(top) pushdown(q[top]), -- top;
while(!is_root(x))
{
int y = fa[x], z = fa[y];
if(!is_root(y)) (son[y][1] == x) ^ (son[z][1] == y) ? rotate(x) : rotate(y);
rotate(x);
}
}
void access(int x)
{for(R i = 0; x; i = x, x = fa[x]) splay(x), son[x][1] = i, update(x);}
void make_root(int x) {access(x), splay(x), rev[x] ^= 1;}
void split(int x, int y) {make_root(x), access(y), splay(y);}
int get_rot(int x)
{
access(x), splay(x);
while(son[x][0]) x = son[x][0];
return x;
}
void link(int x, int y)
{
int xx = get_rot(x), yy = get_rot(y);
if(xx == yy) return ;
make_root(x), fa[x] = y;
}
void cut(int x, int y)
{
int xx = get_rot(x), yy = get_rot(y);
if(xx != yy) return ;
split(x, y);//split后默认y在最上面,x在y左边
if(!son[x][1] && !son[x][0]) son[y][0] = 0, fa[x] = 0;
}
void insert(int i)
{
int x = way[i].x, y = way[i].y, fx = find(x), fy = find(y);
if(fx != fy)
{
link(x, n + i), link(n + i, y);
if(fx > fy) swap(fx, fy);
father[fy] = fx;
}
else
{
split(x, y);
if(maxn[y] <= val[n + i]) return ;
int tmp = pos[y];
//son[tmp][0] = son[tmp][1] = fa[tmp] = 0;//把这个点删掉
cut(way[tmp - n].x, tmp), cut(tmp, way[tmp - n].y);//应该是断开和这条边相邻的点
link(x, n + i), link(n + i, y);
}
if(find(1) == find(n)) split(1, n), upmin(ans, way[i].a + maxn[n]);
}
}LCT;
void pre()
{
n = read(), m = read();
for(R i = 1; i <= n; i ++) father[i] = i;
for(R i = 1; i <= m; i ++)
way[i].x = read(), way[i].y = read(), way[i].a = read(), way[i].b = read();
sort(way + 1, way + m + 1, cmp);
}
void work()
{
for(R i = 1; i <= m; i ++) val[n + i] = way[i].b, LCT.insert(i);
if(ans != inf) printf("%d\n", ans);
else printf("-1\n");
}
int main()
{
freopen("in.in", "r", stdin);
pre();
work();
fclose(stdin);
return 0;
}
[NOI2014]魔法森林 LCT的更多相关文章
- BZOJ 3669: [Noi2014]魔法森林( LCT )
排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...
- bzoj 3669: [Noi2014]魔法森林 (LCT)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec ...
- loj2245 [NOI2014]魔法森林 LCT
[NOI2014]魔法森林 链接 loj 思路 a排序,b做动态最小生成树. 把边拆成点就可以了. uoj98.也许lct复杂度写假了..越卡常,越慢 代码 #include <bits/std ...
- bzoj3669: [Noi2014]魔法森林 lct版
先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...
- 【BZOJ3669】[Noi2014]魔法森林 LCT
终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...
- bzoj 3669: [Noi2014] 魔法森林 LCT版
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...
- P2387 [NOI2014]魔法森林 LCT维护最小生成树
\(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 ...
- 洛谷P2387 [NOI2014]魔法森林(LCT)
魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...
随机推荐
- JUC——线程同步锁(LockSupport阻塞原语)
java.util.concurrent.locks.LockSupport这个是一个独立的类,这个类的主要功能是用来解决Thread里面提供的suspend()(挂起线程).resume()(恢复运 ...
- uafxcwd.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator new(unsigned int)"解决办法
如果在编译MFC程序的时候出现下列及类似的错误: 1>uafxcwd.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator ...
- 关于如何使用dubbo管理控制台的一些感想
1.起因 因java项目需要准备安装一个dubbo-admin管理后台研究使用,无奈github上并没有看到dubbo-admin的目录着实让人着急.百度引擎上一些文章也不靠谱!真是浪费时间!所以又 ...
- 马赛克是否无法逆转?Python简单消除,看片无忧!
图片水印,轻松去除 前段时间玩过了全民K歌,不知道大家是否玩过,还是做得挺好的,就我这嗓子都能唱出张学友的味道,其中更是有消除噪声的功能,就是朋友们都在吃鸡大叫,我在旁边唱歌依然不受影响. 既然声音可 ...
- kafka启动报错:另一个程序正在使用此文件,进程无法访问。
在Windows上启动kafka_2.12-1.1.0报以下错误:[2018-05-08 10:24:51,777] ERROR Failed to clean up log for __consum ...
- Daily Scrum (2015/10/30)
据组员们反映其他组都会有休息时间,所以我和PM讨论把每周5晚上作为日常休息时间,这一天组员们自由阅读.
- StringBuffer 与 StringBuilder类的使用
/*如果需要频繁修改字符串 的内容,建议使用字符串缓冲 类(StringBuffer). StringBuffer 其实就是一个存储字符 的容器. 笔试题目:使用Stringbuffer无 参的构造函 ...
- 封装react组件——三级联动
思路: 数据设计:省份为一维数组,一级市为二维数组,二级市/区/县为三维数组.这样设计的好处在于根据数组索引实现数据的关联. UI组件: MUI的DropDownMenu组件或Select Field ...
- 移动端-webkit-user-select:none导致input/textarea输入框无法输入
这个问题,也算是个大坑了. 最开始的开始,是因为我们在做大装盘活动的时候,发现在ios上面出现了这样的问题:点击“转”按钮,ios上面会有延迟并且会出现图片的阴影,这个肯定就不好看了撒,然后,找吧,改 ...
- windows多线程(一) 创建线程 CreateThread
一 线程创建函数 CreateThread 修改说明: 这里 说了另一种创建线程方法,使用_beginthreadex()更安全的创建线程,在实际使用中尽量使用_beginthreadex()来创建线 ...