【BZOJ2655】Calc(拉格朗日插值,动态规划)
【BZOJ2655】Calc(多项式插值,动态规划)
题面
题解
考虑如何\(dp\)
设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案。
\(f[i][j]=f[i-1][j-1]*i*j+f[i][j-1]\)
即不考虑选择\(j\),以及当前选择\(j\),那么枚举是哪个数,转移即可。
时间复杂度\(O(An)\)。
碰到这种东西我们直接假装它是一个若干次的多项式。
先假设是个\(n\)次多项式,发现不对,
再试试\(2n\)次多项式,恩,很对,
那么直接拉格朗日插值就好了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 505
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int A,n,m,MOD,f[MAX][MAX<<1];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int Calc(int x)
{
if(x<=m)return f[n][x];
int tmp=1,ret=0,bs=(n&1)?MOD-1:1;
for(int i=1;i<=m;++i)tmp=1ll*tmp*(x-i)%MOD;
for(int i=1;i<=m;++i)tmp=1ll*tmp*fpow(i,MOD-2)%MOD;
for(int i=0;i<=m;++i,bs=MOD-bs)
{
ret=(ret+1ll*bs*f[n][i]%MOD*tmp%MOD)%MOD;
tmp=1ll*tmp*(x-i)%MOD*fpow(x-i-1,MOD-2)%MOD;
tmp=1ll*tmp*(m-i)%MOD*fpow(i+1,MOD-2)%MOD;
}
return ret;
}
int main()
{
A=read();n=read();MOD=read();
m=min(n+n,A);f[0][0]=1;
for(int j=1;j<=m;f[0][j]=1,++j)
for(int i=1;i<=n;++i)
f[i][j]=(f[i][j-1]+1ll*f[i-1][j-1]*i%MOD*j%MOD)%MOD;
printf("%d\n",Calc(A));
return 0;
}
【BZOJ2655】Calc(拉格朗日插值,动态规划)的更多相关文章
- bzoj千题计划269:bzoj2655: calc (拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- BZOJ 2655: calc(拉格朗日插值)
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...
- [BZOJ2655]calc(拉格朗日插值法+DP)
2655: calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 428 Solved: 246[Submit][Status][Discuss] ...
- bzoj 2566 calc 拉格朗日插值
calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 377 Solved: 226[Submit][Status][Discuss] Descr ...
- bzoj 2655 calc——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- BZOJ2655 calc(动态规划+拉格朗日插值法)
考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...
随机推荐
- 静态构造器(static constructor)
1.定义: 静态构造函数是实现对一个类进行初始化的方法成员. 它一般用于对静态数据的初始化. 静态构造函数不能有参数,不能有修饰符而且不能被调用,当类被加载时,类的静态构造函数自动被调用. 2.特点: ...
- RabbitMQ入门:主题路由器(Topic Exchange)
上一篇博文中,我们使用direct exchange 代替了fanout exchange,这次我们来看下topic exchange. 一.Topic Exchange介绍 topic exchan ...
- ats Linux路由器上内联
路由设置假定客户端集在单个物理接口后面的不同网络上. 出于本例的目的,我们将假设: 客户端位于172.28.56.0/24网络上路由器连接网络172.28.56.0/24和192.168.1.0/24 ...
- RAID系列技术详解
1.RAID 0 RAID 0是把n个物理磁盘虚拟成一个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成一个逻辑上连续,物理上也连续的虚拟磁盘.一级磁盘控制器(指使用这个虚拟磁盘的控制器,如果某台主机 ...
- node 集群与稳定
node集群搭建好之后,还需要考虑一些细节问题. 性能问题 多个工作进程的存活状态管理 工作进程的平滑重启 配置或者静态数据的动态重新载入 其它细节 1 进程事件 Node子进程对象除了send()方 ...
- python将response中的cookies加入到header
url = “http://abad.com”header = { "user-Agent" : "Mozilla/5.0 (Windows NT 10.0; Win64 ...
- css3 transform属性多值的顺序问题
对于transform属性的多值的顺序问题,我自己就被困扰过.后来知道了跟顺序有关,但是不知道为什么.我想应该很多人跟我以前一样,知其然不知其所以然.如果不知道的,也许这篇文章会对大家有所帮助. 先来 ...
- 第十二节 Linux下软件安装
apt-get:apt-get使用各用于处理apt包的公用程序集,我们可以用它来在线安装.卸载和升级软件包等,下面列出一些apt-get包含的常用的一些工具 常用参数: 重新安装: 软件升级:
- maven 阿里仓库配置文件
<?xml version="1.0" encoding="UTF-8"?> <!-- Licensed to the Apache Soft ...
- Beta Scrum Day 2 — 听说
听说