【BZOJ2655】Calc(拉格朗日插值,动态规划)
【BZOJ2655】Calc(多项式插值,动态规划)
题面
题解
考虑如何\(dp\)
设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案。
\(f[i][j]=f[i-1][j-1]*i*j+f[i][j-1]\)
即不考虑选择\(j\),以及当前选择\(j\),那么枚举是哪个数,转移即可。
时间复杂度\(O(An)\)。
碰到这种东西我们直接假装它是一个若干次的多项式。
先假设是个\(n\)次多项式,发现不对,
再试试\(2n\)次多项式,恩,很对,
那么直接拉格朗日插值就好了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 505
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int A,n,m,MOD,f[MAX][MAX<<1];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int Calc(int x)
{
if(x<=m)return f[n][x];
int tmp=1,ret=0,bs=(n&1)?MOD-1:1;
for(int i=1;i<=m;++i)tmp=1ll*tmp*(x-i)%MOD;
for(int i=1;i<=m;++i)tmp=1ll*tmp*fpow(i,MOD-2)%MOD;
for(int i=0;i<=m;++i,bs=MOD-bs)
{
ret=(ret+1ll*bs*f[n][i]%MOD*tmp%MOD)%MOD;
tmp=1ll*tmp*(x-i)%MOD*fpow(x-i-1,MOD-2)%MOD;
tmp=1ll*tmp*(m-i)%MOD*fpow(i+1,MOD-2)%MOD;
}
return ret;
}
int main()
{
A=read();n=read();MOD=read();
m=min(n+n,A);f[0][0]=1;
for(int j=1;j<=m;f[0][j]=1,++j)
for(int i=1;i<=n;++i)
f[i][j]=(f[i][j-1]+1ll*f[i-1][j-1]*i%MOD*j%MOD)%MOD;
printf("%d\n",Calc(A));
return 0;
}
【BZOJ2655】Calc(拉格朗日插值,动态规划)的更多相关文章
- bzoj千题计划269:bzoj2655: calc (拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- BZOJ 2655: calc(拉格朗日插值)
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...
- [BZOJ2655]calc(拉格朗日插值法+DP)
2655: calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 428 Solved: 246[Submit][Status][Discuss] ...
- bzoj 2566 calc 拉格朗日插值
calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 377 Solved: 226[Submit][Status][Discuss] Descr ...
- bzoj 2655 calc——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- BZOJ2655 calc(动态规划+拉格朗日插值法)
考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...
随机推荐
- 【Unity Shader】(六) ------ 复杂的光照(上)
笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题. [Unity Sha ...
- python3安装与环境配置和pip的基本使用
本文环境 系统: Windows10 Python版本: 3.6 安装 python安装包下载 可以选择安装版和解压版 安装版一键安装, 安装过程注意选择安装位置, xx To Path选项(勾选), ...
- SDN学习笔记
SDN 什么是SDN SDN是一种框架和思想,核心诉求是通过软件控制网络,实现业务的自动化部署,为方便软件来控制网络,希望控制面和转发面是分离的. 例如,传统的交换机内部,由交换机负责具体的网络流量往 ...
- UI设计学习笔记(7-12)
UI学习笔记(7)--扁平化图标 认识扁平化 Flat Design 抛弃传统的渐变.阴影.高光等拟真视觉效果,打造看上去更平的界面.(颜色.形状) 扁平化图标有什么优缺点 优点: 简约不简单.有新鲜 ...
- 机器人平台框架Yarp - Yet another robot platform
简介 ROS有强大和易用的特性,用的人很多,目前已经推出2.0版本,有相关的官网和论坛.然而其缺点也比较明显. 只能基于Ubuntu系统,且一个ROS版本只能对应一个具体的Ubuntu版本 通信 ...
- Final发布 -----欢迎来怼团队
欢迎来怼项目小组—Final发布展示 一.小组成员 队长:田继平 成员:葛美义,王伟东,姜珊,邵朔,阚博文 ,李圆圆 二.文案+美工展示 链接:http://www.cnblogs.com/js201 ...
- PC端上必应词典与金山词霸的测评分析
1. 介绍 随着英语学习越来越普及,基本上现在每位大学生的电脑上都会有一款便捷的英语查词软件,这次我们团队选择测评的 是微软必应词典(3.5.0.4311)和金山词霸(2014.05.16.044) ...
- web02-welcomeyou
新建web项目web02-welcomeyou, 修改index.jsp为 <body> This is my JSP page. <br> <form action=& ...
- Mininet-Wifi 多接入点(Access Point)实验
实验简介 这个实验来自Mininet-Wifi用户手册.在本实验中,我们会创建一个有三个AP的线式拓扑,并有三个站点(station)与每个AP通过无线相连.将通过这个时间简单演示一些Mininet ...
- slf4j+log4j的初次使用
关于这两者的组合应用带来的好处,google都有 就不说了. 首先说下配置, 工作笔记:在myeclipse 中创建一个java project 创建一个 TestSlf4J 类 package co ...