洛谷 3379 最近公共祖先(LCA 倍增)

题意分析

裸的板子题,但是注意这题n上限50w,我用的边表,所以要开到100w才能过,一开始re了两发,发现这个问题了。

代码总览

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define nmax 1000100
#define demen 21
using namespace std;
int fa[nmax][demen],dis[nmax],head[nmax],dep[nmax];
int n,m,tot = 0;
struct node{
int to;
int next;
int w;
}edge[nmax];
void add(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void dfs(int rt,int f){
fa[rt][0] = f;
for(int i = 1;i<=20;++i){
fa[rt][i] = fa[fa[rt][i-1]][i-1];
}
for(int i = head[rt];i!=-1;i = edge[i].next){
int nxt = edge[i].to;
if(nxt != f){
dep[nxt] = dep[rt] + 1;
dfs(nxt,rt);
}
}
}
int lca(int x, int y){
int X = x,Y=y;
if(dep[x] < dep[y]) swap(x,y);
int dre = dep[x] - dep[y];
for(int i = 20;i>=0;--i){
if((1<<i) & dre)
x = fa[x][i];
}
if(x == y) return(x);
for(int i = 20;i>=0;--i){
if(fa[x][i] != fa[y][i]){
x = fa[x][i],y = fa[y][i];
}
}
return(fa[x][0]);
}
void init(){
memset(fa,0,sizeof fa);
memset(head,-1,sizeof head);
memset(dep,0,sizeof dep);
tot = 0;
}
int main()
{
init();
int n,m,k,u,v,w,root = 0;
scanf("%d %d %d",&n,&k,&root);
for(int i = 0;i<n-1;++i){
scanf("%d %d",&u,&v);
add(u,v);
add(v,u);
}
dep[root] = 1;
dfs(root,0);
int ans = 0;
for(int i = 0;i<k;++i){
scanf("%d %d",&u,&v);
printf("%d\n",lca(u,v));
} return 0;
}

洛谷 3379 最近公共祖先(LCA 倍增)的更多相关文章

  1. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  2. 最近公共祖先 LCA 倍增算法

          树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...

  3. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

  4. 最近公共祖先 LCA 倍增法

    [简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...

  5. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  6. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  9. LCA算法倍增算法(洛谷3379模板题)

    倍增(爬树)算法,刚刚学习的算法.对每一个点的父节点,就记录他的2k的父亲. 题目为http://www.luogu.org/problem/show?pid=3379 第一步先记录每一个节点的深度用 ...

随机推荐

  1. 互联网校招面试必备——Java多线程

    本文首发于我的个人博客:尾尾部落 本文是我刷了几十篇一线互联网校招java后端开发岗位的面经后总结的多线程相关题目,虽然有点小长,但是面试前看一看,相信能帮你轻松啃下多线程这块大骨头. 什么是进程,什 ...

  2. leetcode刷题笔记191 位1的个数

    题目描述: 编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例: 输入: 输出: 解释: 32位整数 的二进制表示为 . 题目分析: 判断3 ...

  3. spring boot 配置全局日期类型转换器

    1. 首先自定义一个类型转换器 import org.springframework.core.convert.converter.Converter; import org.springframew ...

  4. 安装配置heapster(包含influxdb,grafana)

    前提:已搭建好kubernetes集群.安装完dashboard 默认安装的dashboard无法展示集群的度量指标信息,此时就需要安装heapster插件 Heapster 插件使用包含三部分内容: ...

  5. VirtualBox共享文件夹 Windows 7 (宿主机) + Ubuntu 12.04

    1 安装增强功能包1.1 运行Ubuntu并登陆,菜单“设备”->“安装增强功能包(Install Guest Additions)”ubun1.2 桌面上会多出一个光盘图标,光盘默认自动加载到 ...

  6. chown命令详情

    基础命令学习目录首页 原文链接:https://www.jb51.net/article/98255.htm chown将指定文件的拥有者改为指定的用户或组,用户可以是用户名或者用户ID:组可以是组名 ...

  7. 使用 PropTypes 进行类型检查

    注意: 从 React v15.5 开始 ,React.PropTypes 助手函数已被弃用,建议使用 prop-types 库 来定义contextTypes. 1 2 3 4 5 6 7 8 9 ...

  8. redis使用哈希槽实现集群

    Redis Cluster集群 一.redis-cluster设计 Redis集群搭建的方式有多种,例如使用zookeeper等,但从redis 3.0之后版本支持redis-cluster集群,Re ...

  9. 如何使用g++编译调用dll的c++代码

    本文将有以下4个部分来讲如何使用g++编译调用dll的c++代码. 1.如何调用dll 2.动态链接和静态链接的区别 3.g++的编译参数以及如何编译调用dll的c++代码 4.总结 1.如何调用dl ...

  10. "Hello World!"团队负责人领跑衫感言

    时间:2017年12月7日 团队名称:“Hello World!” 团队项目:空天猎 团队成员:陈建宇(项目负责人).刘淑霞.黄泽宇.方铭.贾男男.刘耀泽.刘成志 感言正文: 记<软件工程> ...