洛谷 3379 最近公共祖先(LCA 倍增)

题意分析

裸的板子题,但是注意这题n上限50w,我用的边表,所以要开到100w才能过,一开始re了两发,发现这个问题了。

代码总览

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define nmax 1000100
#define demen 21
using namespace std;
int fa[nmax][demen],dis[nmax],head[nmax],dep[nmax];
int n,m,tot = 0;
struct node{
int to;
int next;
int w;
}edge[nmax];
void add(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void dfs(int rt,int f){
fa[rt][0] = f;
for(int i = 1;i<=20;++i){
fa[rt][i] = fa[fa[rt][i-1]][i-1];
}
for(int i = head[rt];i!=-1;i = edge[i].next){
int nxt = edge[i].to;
if(nxt != f){
dep[nxt] = dep[rt] + 1;
dfs(nxt,rt);
}
}
}
int lca(int x, int y){
int X = x,Y=y;
if(dep[x] < dep[y]) swap(x,y);
int dre = dep[x] - dep[y];
for(int i = 20;i>=0;--i){
if((1<<i) & dre)
x = fa[x][i];
}
if(x == y) return(x);
for(int i = 20;i>=0;--i){
if(fa[x][i] != fa[y][i]){
x = fa[x][i],y = fa[y][i];
}
}
return(fa[x][0]);
}
void init(){
memset(fa,0,sizeof fa);
memset(head,-1,sizeof head);
memset(dep,0,sizeof dep);
tot = 0;
}
int main()
{
init();
int n,m,k,u,v,w,root = 0;
scanf("%d %d %d",&n,&k,&root);
for(int i = 0;i<n-1;++i){
scanf("%d %d",&u,&v);
add(u,v);
add(v,u);
}
dep[root] = 1;
dfs(root,0);
int ans = 0;
for(int i = 0;i<k;++i){
scanf("%d %d",&u,&v);
printf("%d\n",lca(u,v));
} return 0;
}

洛谷 3379 最近公共祖先(LCA 倍增)的更多相关文章

  1. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  2. 最近公共祖先 LCA 倍增算法

          树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...

  3. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

  4. 最近公共祖先 LCA 倍增法

    [简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...

  5. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  6. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  9. LCA算法倍增算法(洛谷3379模板题)

    倍增(爬树)算法,刚刚学习的算法.对每一个点的父节点,就记录他的2k的父亲. 题目为http://www.luogu.org/problem/show?pid=3379 第一步先记录每一个节点的深度用 ...

随机推荐

  1. SSO流程

    SSO SSO又名单点登录,用户只需要登录一次就可以访问权限范围内的所有应用子系统.举个简单的例子,你在百度首页登录成功之后,你再访问百度百科.百度知道.百度贴吧等网站也会处于登录状态了,这就是一个单 ...

  2. 某简单易懂的人脸识别 API 的开发环境搭建和简易教程

    最近接了个人脸识别相关的项目,是基于某个非常简单易懂的人脸识别 API:face_recognition 做的.这个库接口非常傻瓜,很适合新手上手,而且可以研究其源码来学习 dlib 这个拥有更加灵活 ...

  3. fdisk命令详解

    基础命令学习目录 原文链接:https://www.cnblogs.com/xiaofengkang/archive/2011/06/06/2073579.html fdisk -l 可以列出所有的分 ...

  4. Windows环境下,从零开始搭建Nodejs+Express+Ejs框架(二)---安装Express,ejs

    安装Express,ejs的前提是一定要先安装nodejs,具体安装方法请查看 http://www.cnblogs.com/tfiremeteor/p/8973105.html 安装Express和 ...

  5. 爬虫_处理js动态加载

    1.selenium模块下载网页提取url,[煎蛋网] https://www.cnblogs.com/fat39/p/9865949.html#tag5 2.该网页加密了url,通过js获取图片.分 ...

  6. 配置idea

    http://www.cnblogs.com/yangyquin/p/5285272.html

  7. TeamWork#3,Week5,Scrum Meeting 11.4

    今天我们进行了第一次Scrum Meeting,总结了最近一段时间的工作成果和经验教训,并分配了每个成员下一步的工作.网络爬虫对我们来说是一个难点,因为之前接触比较少,所以需要从头学起.我们参考了大量 ...

  8. Scrum Meeting 11.06

    成员 今日任务 明日计划 用时 徐越 学习ListView+simpleAdapter,actionBar.阅读并修改前端代码 继续修改前端代码.完善数据库 4h 赵庶宏  构建后端数据库,进行完善 ...

  9. Task 6.4 冲刺Two之站立会议4

    今天对主界面部分的代码进行了完善,因为主界面有对于用户账号的设置.包括头像修改.增删好友.进入聊天界面等功能,包含的内容很多.我主要是负责跟聊天界面的连接以及账号设置的部分:遇到的问题有,因为这部分依 ...

  10. android 的helloworld没跑起来 原因

    <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com. ...