1. 简介

生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x)\)最大的\(y_i\). 具体地, \(y_{*}=arg \max_{y_i}p(y_i|x)=arg \max_{y_i}\frac{p(x|y_i)p(y_i)}{p(x)}=arg \max_{y_i}p(x|y_i)p(y_i)=arg \max_{y_i}p(x,y_i)\).

判别式模型(discriminative model)则会直接对\(p(y|x)\)进行建模.

关于二者之间的优劣有大量的讨论. SVM的发明者Vapnik声称"one should solve the (classification) problem directly and never solve a more general problem as an intermediate step [such as modeling p(x|y)]", 但是, 最近Deep Learning大行其道, 其代表性算法DBN就是生成式模型. 通常来说, 因为生成式模型要对类条件密度(class conditional density)\(p(x|y_i)\)进行建模, 而判别式模型只需要对类后验密度(class-posterior density)进行建模, 前者通常会比后者要复杂, 更难以建模, 如下图所示.

2. 对比

下面简单比较下生成式模型和判别式模型的优缺点.

1. 一般来说, 生成式模型都会对数据的分布做一定的假设, 比如朴素贝叶斯会假设在给定\(y\)的情况下各个特征之间是条件独立的:\(p(X|y)=\prod_{i=1}^{N}p(x_i|y)\), GDA会假设

\(p(X|y=c,\theta)=\mathcal{N}(\mu_c,\Sigma_c)\). 当数据满足这些假设时, 生成式模型通常需要较少的数据就能取得不错的效果, 但是当这些假设不成立时, 判别式模型会得到更好的效果.

2. 生成式模型最终得到的错误率会比判别式模型高, 但是其需要更少的训练样本就可以使错误率收敛[限于Genarative-Discriminative Pair, 详见[2]].

3. 生成式模型更容易拟合, 比如在朴素贝叶斯中只需要计下数就可以, 而判别式模型通常都需要解决凸优化问题.

4. 当添加新的类别时, 生成式模型不需要全部重新训练, 只需要计算新的类别\(y_new\)和\(x\)的联合分布\(p(y_new,x)\)即可, 而判别式模型则需要全部重新训练.

5. 生成式模型可以更好地利用无标签数据(比如DBN), 而判别式模型不可以.

6. 生成式模型可以生成\(x\), 因为判别式模型是对\(p(x,y)\)进行建模, 这点在DBN的CD算法中中也有体现, 而判别式模型不可以生成\(x\).

7. 判别式模型可以对输入数据\(x\)进行预处理, 使用\(\phi(x)\)来代替\(x\), 如下图所示, 而生成式模型不是很方便进行替换.

左图中直接使用\(x\)进行逻辑斯蒂回归, 而右图则使用径向基核对\(x\)进行变换后再使用逻辑斯蒂回归.

3. 二者所包含的算法

3.1 生成式模型

  • 判别式分析
  • 朴素贝叶斯
  • K近邻(KNN)
  • 混合高斯模型
  • 隐马尔科夫模型(HMM)
  • 贝叶斯网络
  • Sigmoid Belief Networks
  • 马尔科夫随机场(Markov Random Fields)
  • 深度信念网络(DBN)

3.2 判别式模型

  • 线性回归(Linear Regression)
  • 逻辑斯蒂回归(Logistic Regression)
  • 神经网络(NN)
  • 支持向量机(SVM)
  • 高斯过程(Gaussian Process)
  • 条件随机场(CRF)
  • CART(Classification and Regression Tree)

参考文献:

[1]. Kevin P. Murphy. Machine Learning: A Probabilistic Perspective, Chapter 8.6, Page267-271.

[2]. Andrew Y. Ng, Micheal I. Jordan. On Discrimintive vs. Generative Classifiers: A comparison of logistic regression and naive Bayes.

[3]. Stack Overflow: What is the difference between a Generative and Discriminative Algorithm?

判别式模型 vs. 生成式模型的更多相关文章

  1. AI 判别式模型和生成式模型

    判别式模型(discriminative model) 生成式模型(generative model) 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P ...

  2. 产生式模型(生成式模型)与判别式模型<转载>

    转自http://dongzipnf.blog.sohu.com/189983746.html 产生式模型与判别式模型 产生式模型(Generative Model)与判别式模型(Discrimiti ...

  3. Machine Learning系列--判别式模型与生成式模型

    监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出.这个模型的一般形式为决策函数:$$ Y=f(X) $$或者条件概率分布:$$ P(Y|X) $$监督学习方法又可以分为生成方法 ...

  4. 生成式模型 VS 判别式模型

    1 定义 1.1 生成式模型 生成式模型(Generative Model)会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得 p(yi|x),然后选取使得p(yi|x) 最大的 yi,即 ...

  5. 生成式模型(generative) vs 判别式模型(discriminative)

    Andrew Ng, On Discriminative vs. Generative classifiers: A comparison of logistic regression and nai ...

  6. 机器学习 —— 基础整理(三)生成式模型的非参数方法: Parzen窗估计、k近邻估计;k近邻分类器

    本文简述了以下内容: (一)生成式模型的非参数方法 (二)Parzen窗估计 (三)k近邻估计 (四)k近邻分类器(k-nearest neighbor,kNN) (一)非参数方法(Non-param ...

  7. 预测学习、深度生成式模型、DcGAN、应用案例、相关paper

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  8. 生成式模型之 GAN

    生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域.2016年,GANs热潮席卷AI ...

  9. Asp.net管道模型(管线模型)

    Asp.net管道模型(管线模型)   前言 为什么我会起这样的一个标题,其实我原本只想了解asp.net的管道模型而已,但在查看资料的时候遇到不明白的地方又横向地查阅了其他相关的资料,而收获比当初预 ...

随机推荐

  1. tomcat介绍

    Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由java语言编写,需要运行在jvm虚拟机中.之所以Java的应用 ...

  2. Beta阶段DAY2

    一.提供当天站立式会议照片一张 二.每个人的工作 1.讨论项目每个成员的昨天进展 刘阳航:删除多余按钮,调整界面. 林庭亦:删除麻烦的颜色设置. 郑子熙:添加新增按钮. 陈文俊:重新规划面板及功能. ...

  3. PHP学习心得2

    对于PHP的语法结构,刚开始真的很不习惯,真搞不懂为什么每个变量之前都要加个“$”符号,每个语句写完之后都必须加上“分号”来表示此句已经结束,还有,PHP对字母的大小写是敏感的,写的时候一定要注意大小 ...

  4. Linux 压缩 解压缩 命令相关

    1.命令格式:tar[必要参数][选择参数][文件] 2.命令功能:用来压缩和解压文件.tar本身不具有压缩功能.他是调用压缩功能实现的 3.命令参数:必要参数有如下:-A 新增压缩文件到已存在的压缩 ...

  5. php反射方法信息

    <?phpclass ReflectionFunction implements Reflector{    final private __clone()    public object _ ...

  6. typescript 不用import?

    如果你想用ts文件,而又不想import,export,怎么办呢? 感谢开发者提供的工具.    https://github.com/domchen/typescript-plus.   感想: 仅 ...

  7. Android CollapsingToolbarLayout

    第一次看到这种用户体验是在Google Play Store App的应用详情的Activity中. 大的Banner图,能第一时间吸引用户的眼球,用不一样的Banner大图更具个性化的展示内容.图总 ...

  8. 记一次java程序out of memory问题

    在一个比较大批量的pdf转String项目中遇到了:java.lang.OutOfMemoryError: Java heap space错误 第一反应肯定是程序没有写好,大量循环时没有把程序中没有用 ...

  9. 使用SUID二进制文件进行Linux权限升级技巧

      0x00 基础知识 众所周知,在Linux中一切都以文件存在,包括具有允许或限制三个执行操作(即读/写/执行)权限的目录和设备.因此,当给任何文件设置权限时,应该需要了解允许的Linux用户或限制 ...

  10. 《Linux内核设计与实现》学习总结 Chap4

    第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统.只有通过调度程序的合理调度,系统资源才能最大限 ...