题目链接

http://codeforces.com/problemset/problem/691/E

题意

给出一个长度为n的序列,从其中选择k个数 组成长度为k的序列,因为(k 有可能 > n) 那么数字是可以重复选择的

使得 aj 属于 a1 -> ak-1 满足 aj ^ aj + 1 中二进制表示中1的个数是3的倍数

思路

很显然 当k == 1的时候,不存在 aj 属于 a1 -> a0 那么 自然是满足的 也就是说 k == 1 的时候 答案就是n

那么 k == 2 的时候 用一个二维01矩阵表示 a[i] ^ a[j] 是否满足条件 如果是 就为1

最后把这个二维矩阵的和 加起来

然后是 k >= 3 的情况

根据矩阵乘法的性质

我们知道 矩阵a * 矩阵b = 矩阵ans

ans[i][j] = a[i][1] * b[1][j] + …… + a[i][n - 1] * b[n - 1][j]

那么很显然 当 k == 3的时候

a[i][1] * b[1][j] 表示的是 数列 arr[i] arr[1] arr[j] 这个数列是否满足题目条件

加入 易知 只有当 arr[i][1] == 1 && arr[1][j] == 1的时候 才是符合的

那么其相乘起来 也是1 是一个长度为3 的满足条件的序列

由此观之,如果 k == 3 只要算 k == 2 的时候 构造的那个矩阵 的 平方 再求和 就是答案

那么 k > 3的时候 答案就是 对 k == 2 的那个矩阵 算 k - 1次幂 就可以

用矩阵快速幂优化

AC代码

#pragma comment(linker, "/STACK:102400000,102400000")

#include <cstdio>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <map>
#include <stack>
#include <set>
#include <list>
#include <numeric>
#include <sstream>
#include <iomanip>
#include <limits> #define pb push_back
#define fi first
#define se second
#define L(on) ((on)<<1)
#define R(on) (L(on) | 1)
#define mkp(a, b) make_pair(a, b)
#define bug puts("***bug***");
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define CLR(a, b) memset(a, (b), sizeof(a));
#define syn_close ios::sync_with_stdio(false); cin.tie(0);
#define sp system("pause");
//#define gets gets_s using namespace std; typedef long long ll;
typedef long double ld;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef vector <int> vi;
typedef vector <ll> vll;
typedef vector < vi > vvi; const double PI = acos(-1.0);
const double EI = exp(1.0);
const double eps = 1e-8; inline int read()
{
char c = getchar(); int ans = 0, vis = 1;
while (c < '0' || c > '9') { if (c == '-') vis = -vis; c = getchar(); }
while (c >= '0' && c <= '9') { ans = ans * 10 + c - '0'; c = getchar(); }
return ans * vis;
} const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fll;
const int maxn = (int)1e2 + 10;
const int MAXN = (int)1e4 + 10;
const ll MOD = (ll)1e9 + 7; int n;
ll k;
ll arr[maxn]; struct Matrix
{
ll G[maxn][maxn];
int len;
Matrix () {}
Matrix operator * (const Matrix& r) const
{
Matrix tmp; tmp.len = len;
CLR(tmp.G, 0);
for (int i = 0; i < len; i++)
for (int j = 0; j < len; j++)
for (int k = 0; k < len; k++)
tmp.G[i][j] = (tmp.G[i][j] + G[i][k] * r.G[k][j]) % MOD;
return tmp;
}
}base; Matrix pow_mod(Matrix base, ll count)
{
Matrix ans; ans.len = base.len;
CLR(ans.G, 0);
for (int i = 0; i < ans.len; i++)
ans.G[i][i] = 1;
while (count)
{
if (count & 1)
ans = ans * base;
base = base * base;
count >>= 1;
}
return ans;
} ll ok(ll x)
{
ll ans = 0;
while (x)
{
if (x & 1) ans++;
x >>= 1;
}
return (ans % 3 == 0);
} void input()
{
scanf("%d%lld", &n, &k);
for (int i = 0; i < n; i++)
scanf("%lld", arr + i);
base.len = n;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
base.G[i][j] = ok(arr[i] ^ arr[j]);
} void solve()
{
base = pow_mod(base, k - 1);
ll ans = 0;
for (int i = 0; i < base.len; i++)
for (int j = 0; j < base.len; j++)
ans = (ans + base.G[i][j]) % MOD;
cout << ans << endl;
} int main()
{
input(); solve();
}

CodeForces - 691E Xor-sequences 【矩阵快速幂】的更多相关文章

  1. Codeforces 691E题解 DP+矩阵快速幂

    题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...

  2. Codeforces 691E Xor-sequences(矩阵快速幂)

    You are given n integers a1,  a2,  ...,  an. A sequence of integers x1,  x2,  ...,  xk is called a & ...

  3. Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...

  4. Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  5. codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)

    题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...

  6. Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check

    A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...

  7. Xor-sequences CodeForces - 691E || 矩阵快速幂

    Xor-sequences CodeForces - 691E 题意:在有n个数的数列中选k个数(可以重复选,可以不按顺序)形成一个数列,使得任意相邻两个数异或的结果转换成二进制后其中1的个数是三的倍 ...

  8. codeforces 691E 矩阵快速幂+dp

    传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...

  9. codeforces 691E Xor-sequences 矩阵快速幂

    思路:刚开始 n个元素,a[i][j]代表以i开头,j结尾的二元组符合条件的有多少 这是等于长度为2的数量 长度为3的数量为a*a,所以长度为n的数量是a^(k-1) 然后就是矩阵快速幂,然而我并不能 ...

随机推荐

  1. 从‘void*’到‘int’的转换损失精度

    在CentOS6.2 64位下编译一下代码,不通过,提示 ./11_2.cpp: In function ‘int main(int, char**)’:./11_2.cpp:28: 错误:从‘voi ...

  2. iPhone6 Plus、iPhone6、iPhone5S和之前版本真实分辨率

    以前总是嘲笑Android手机屏幕分辨率大小不一,碎片化严重,如今iPhone6发布,让iPhone的分辨率一下子增加到了四种.我们先来制作一张表格来对比说明一下: 以前总是嘲笑Android手机屏幕 ...

  3. 谈谈 epmd

    在<Erlang/OTP 并发编程实战>中,对 epmd 有如下描述: epmd  代表 Erlang 端口映射守护进程(Erlang Port Mapper Daemon). 每启动一个 ...

  4. MySQL - 统计每个月生日的人数

    Person表定义如下: create table person(id int primary key auto_increment, birthday datetime); Person 数据如下: ...

  5. Eclipse 内置浏览器

    Web 浏览器 Eclipse 系统内部自带了浏览器,该浏览器可以通过点击 Window 菜单并选择 Show View > Other,在弹出来的对话框的搜索栏中输入 "browse ...

  6. 从 ie10浏览器下Symbol 未定义的问题 探索vue项目如何兼容ie低版本浏览器(ie9, ie10, ie 11 )

    问题:     vue项目在ie11下一片空白并报Symbol 未定义的错 原因:     ie10浏览器解析不了es6的语法,需要我们使用babel(Babel是一种工具链,主要用于将ECMAScr ...

  7. centos7 更换yum源为阿里云

    mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup curl -o /etc/yum.repos ...

  8. AdnroidUtils-常用工具类(showDiaLog/HTTP)

    1. HttpUtils 该工具类应用于Android客户端+Web服务器 /** * */ package com.nubb.auction.client.util; import java.uti ...

  9. cocos2D 虚拟摇杆Joystick功能实现

        @implementation InputLayer        - (id)init    {        if(self = [super init])        {        ...

  10. FFF at Valentine(强连通分量缩点+拓扑排序)

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...