题目链接:

PKU:http://poj.org/problem?id=1861

ZJU:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=542

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network,
each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 

Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one
because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about
possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot
be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding
cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

Source

Northeastern Europe 2001, Northern Subregion

题意:

有n个顶点,m条边,每条边都是双向的,而且有一定的长度。要求使每一个顶点都连通,而且要使总长度最短,

输出最大边、边的总数和所选择的边。

PS:

貌似题目的案例有点问题,卡了好久!

应该输出的是:

1

3

1 3

2 3

2 4

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 15017;
int father[maxn];
struct edge
{
int x,y,v;
};
struct edge ed[maxn],ansa[maxn]; bool cmp(edge a,edge b)
{
return a.v<b.v;
} int find(int x)
{
if(x==father[x])
return x;
return father[x]=find(father[x]);
} void Krusal(int n,int m)
{
int i,fx,fy,cnt;
int ans=0;
for(i = 1; i <= n; i++)
father[i]=i;
sort(ed,ed+m,cmp);//对边的排序
cnt=0;
int max=-1;
for(i=0; i<m; i++)
{
fx=find(ed[i].x);
fy=find(ed[i].y);
if(fx!=fy)
{
ans+=ed[i].v;
father[fx]=fy;
ansa[cnt].x=ed[i].x;
ansa[cnt++].y=ed[i].y;
if(max<ed[i].v)
max=ed[i].v;
}
}
printf("%d\n%d\n",max,cnt);
for(i=0; i<cnt; i++)
printf("%d %d\n",ansa[i].x,ansa[i].y);
} int main()
{
int t;
int n, m;
int a, b, k; while(scanf("%d %d",&n,&m)!=EOF)
{
for(int i = 0; i < m; i++)
{
scanf("%d %d %d",&a,&b,&k);
ed[i].x=a,ed[i].y=b,ed[i].v=k;
}
Krusal(n,m);
}
return 0;
}

POJ 1861 &amp; ZOJ 1542 Network(最小生成树之Krusal)的更多相关文章

  1. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  2. POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环)

    POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环) Description Arbi ...

  3. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  4. POJ 1861:Network(最小生成树&amp;&amp;kruskal)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13266   Accepted: 5123   Specia ...

  5. POJ 2349 Arctic Network (最小生成树)

    Arctic Network Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  6. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  7. ZOJ 1586 QS Network (最小生成树)

    QS Network Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit Sta ...

  8. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

  9. POJ 2349 Arctic Network(最小生成树+求第k大边)

    题目链接:http://poj.org/problem?id=2349 题目大意:有n个前哨,和s个卫星通讯装置,任何两个装了卫星通讯装置的前哨都可以通过卫星进行通信,而不管他们的位置. 否则,只有两 ...

随机推荐

  1. [Pycharm] Interpreter setting in Pycharm

    From: http://blog.csdn.net/u013088062/article/details/50135135 From: http://blog.csdn.net/u013088062 ...

  2. 转:ios学习指南

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:Franz Fang链接:https://www.zhihu.com/question/20264108/answer/302 ...

  3. ILockBytes Windows Mobile 6.5

    ILockBytes Windows Mobile 6.5  https://msdn.microsoft.com/zh-cn/library/aa911496(en-us,MSDN.10).aspx ...

  4. ssh中使用spring的集成quartz 编写定时任务

    之前没有使用框架开发时对于开发定时任务都是 使用java的原声timer类,重写线程的run方法跑要执行的任务.刚刚换的新公司,项目使用ssh2,目前该项目中的定时任务的使用spirng集成的quar ...

  5. HTTP——请求和响应格式

    HTTP请求格式:<request-line><headers><blank line>[<request-body>]说明:第一行必须是一个请求行(r ...

  6. 在LoadRunner脚本中实现随机ThinkTime

    一般情况下,我们都是通过Run-Time Settings来设置Think Time(思考时间),可以设置回放脚本时忽略思考时间,或者是设置回放随机的一段思考时间. By default, when ...

  7. Tabs or Spaces?

    Never mix tabs and spaces. The most popular way of indenting Python is with spaces only. The second- ...

  8. <转>多线程中的lua同步问题

    转自 http://www.cnblogs.com/ghost240/p/3526185.html 最近写paintsnow::start时出现了一个非常麻烦的BUG,程序的Release版本大约每运 ...

  9. Docker 方式运行 jenkins

    原文地址:https://testerhome.com/topics/5798 简介说明 docker 是官方推荐的一种 jenkins 启动方式. 打开 jenkins 的官网,点击进入的是: ht ...

  10. Java设计模式-代理模式之动态代理(附源代码分析)

    Java设计模式-代理模式之动态代理(附源代码分析) 动态代理概念及类图 上一篇中介绍了静态代理,动态代理跟静态代理一个最大的差别就是:动态代理是在执行时刻动态的创建出代理类及其对象. 上篇中的静态代 ...