Description

“第一分钟,X说,要有矩阵,于是便有了一个里面写满了\(0\)的\(n\times m\)矩阵。

第二分钟,L说,要能修改,于是便有了将左上角为\((a,b)\),右下角为\((c,d)\)的一个矩形区域内的全部数字加上一个值的操作。

第三分钟,k说,要能查询,于是便有了求给定矩形区域内的全部数字和的操作。

第四分钟,彩虹喵说,要基于二叉树的数据结构,于是便有了数据范围。

第五分钟,和雪说,要有耐心,于是便有了时间限制。

第六分钟,吃钢琴男说,要省点事,于是便有了保证运算过程中及最终结果均不超过32位有符号整数类型的表示范围的限制。

第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。”

——《上帝造裸题的七分钟》 所以这个神圣的任务就交给你了。

Input

输入数据的第一行为X n m,代表矩阵大小为\(n \times m\)。

从输入数据的第二行开始到文件尾的每一行会出现以下两种操作:

  • L a b c d delta —— 代表将\((a,b),(c,d)\)为顶点的矩形区域内的所有数字加上delta。
  • k a b c d —— 代表求\((a,b),(c,d)\)为顶点的矩形区域内所有数字的和。

请注意,\(k\)为小写。

Output

针对每个k操作,在单独的一行输出答案。

裸的二维树状数组问题.

二维前缀和:

\[sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j]
\]

考虑差分:

\[d[i][j]表示a[i][j]与a[i-1][j]+a[i][j-1]-a[i-1][j-1]的差
\]

此时小推一下式子即可.

区间修改,区间查询

\[\sum_{i=1}^{x}\sum_{j=1}^{y}\sum_{k=1}^{i}\sum_{h=1}^{j}d[h][k]
\]

这个时候记录每个位置的\(d[h][k]\)出现了几次.

所以式子变形得到.

\[\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j] \times (x-i+1) \times (y-j+1)
\]

然后把式子展开.就变成这个

\[(x+1)\times (y+1)\times \sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]-(y+1)\times\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]\times i -(x+1)\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]\times j + \sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j] \times i \times j
\]

然后四个树状数组数组分别维护这些东西:

\(d[i][j],d[i][j]\times i ,d[i][j] \times j,d[i][j] \times i\times j\)

代码

#include<cstdio>
#include<cctype>
#define N 2050
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int t1[N][N],t2[N][N],t3[N][N],t4[N][N],n,m;
#define lowbit(x) x&-x
inline void add(int x,int y,int del)
{
for(R int i=x;i<=n;i+=lowbit(i))
for(R int j=y;j<=m;j+=lowbit(j))
{
t1[i][j]+=del;
t2[i][j]+=del*x;
t3[i][j]+=del*y;
t4[i][j]+=del*x*y;
}
}
inline void ado(int xa,int ya,int xb,int yb,int z)
{add(xa,ya,z);add(xa,yb+1,-z);add(xb+1,ya,-z);add(xb+1,yb+1,z);}
inline int que(int x,int y)
{
R int res=0;
for(R int i=x;i;i-=lowbit(i))
for(R int j=y;j;j-=lowbit(j))
res+=(x+1)*(y+1)*t1[i][j]-(y+1)*t2[i][j]-(x+1)*t3[i][j]+t4[i][j];
return res;
}
inline int query(int xa,int ya,int xb,int yb)
{return que(xb,yb)-que(xb,ya-1)-que(xa-1,yb)+que(xa-1, ya-1);}
char s[6];
int main()
{
in(n),in(m);
for(R int a,b,c,d,x;~scanf("%s",s+1);)
{
in(a),in(b),in(c),in(d);
if(s[1]=='L')in(x),ado(a,b,c,d,x);
else printf("%d\n",query(a,b,c,d));
}
}

二维树状数组+差分【p4514】上帝造题的七分钟的更多相关文章

  1. POJ2155/LNSYOJ113 Matrix【二维树状数组+差分】【做题报告】

    这道题是一个二维树状数组,思路十分神奇,其实还是挺水的 题目描述 给定一个N∗NN∗N的矩阵AA,其中矩阵中的元素只有0或者1,其中A[i,j]A[i,j]表示矩阵的第i行和第j列(1≤i,j≤N)( ...

  2. 【树状数组】BZOJ3132 上帝造题的七分钟

    3132: 上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1004  Solved: 445[Submit][Status][Dis ...

  3. hdu 2642二维树状数组 单点更新区间查询 模板题

    二维树状数组 单点更新区间查询 模板 从零开始借鉴http://www.2cto.com/kf/201307/227488.html #include<stdio.h> #include& ...

  4. Codeforces Round #439 (Div. 2) Problem E (Codeforces 869E) - 暴力 - 随机化 - 二维树状数组 - 差分

    Adieu l'ami. Koyomi is helping Oshino, an acquaintance of his, to take care of an open space around ...

  5. P4514 上帝造题的七分钟(二维树状数组)

    P4514 上帝造题的七分钟 二维树状数组 差分维护区间加法,区间求和 #include<cstdio> int read(){ ,f=; ') f=f&&(c!='-') ...

  6. BZOJ2738矩阵乘法——整体二分+二维树状数组

    题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入   第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵:再接下来Q行每行5 ...

  7. PKU 2155 Matrix(裸二维树状数组)

    题目大意:原题链接 题意很简单,就不赘诉了. 解题思路: 使用二维树状数组,很裸的题. 二维的写起来也很方便,两重循环. Add(int x,int y,int val)表示(x,y)-(n,n)矩形 ...

  8. [luogu] P4514 上帝造题的七分钟 (树状数组,二维差分)

    P4514 上帝造题的七分钟 题目背景 裸体就意味着身体. 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a ...

  9. 二维树状数组总结&&【洛谷P4514】 上帝造题的七分钟

    P4514 上帝造题的七分钟 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了00的n×mn×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b)(a,b),右下 ...

随机推荐

  1. LeetCode--Reverse Linked List(Java)

    相似题目: Palindrome Number Valid PalinDrome Reverse Linked List Palindrome Linked List 翻转单链表(要注意的是是否含有头 ...

  2. [bzoj5321] [Jxoi2017]加法

    Description 可怜有一个长度为 n 的正整数序列 A,但是她觉得 A 中的数字太小了,这让她很不开心. 于是她选择了 m 个区间 [li, ri] 和两个正整数 a, k.她打算从这 m 个 ...

  3. BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan

    先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...

  4. [bzoj 3224]手写treap

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3224 bzoj不能用time(0),看到这个博客才知道,我也RE了好几发…… #inclu ...

  5. [hdu 4348]区间修改区间查询可持久化线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4348 一开始把lazy标记给push_down了,后来发现这样会让持久化变乱,然后想到不用push_d ...

  6. POJ2253:Frogger(改造Dijkstra)

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 64864   Accepted: 20127 题目链接:ht ...

  7. 自定义toolbar教程

    1.写toolbar的布局文件 ,toolbar.xml <?xml version="1.0" encoding="utf-8"?> <Re ...

  8. Lesson 2

    周末重新学习了一下java,有了些新的体会 1.关于jdk, jre,and  JVM: Jdk: java development kit,面向开发人员的java开发工具包 Jre:java run ...

  9. 「6月雅礼集训 2017 Day1」说无可说

    [题目大意] 给出n个字符串,求有多少组字符串之间编辑距离为1~8. n<=200,∑|S| <= 10^6 [题解] 首先找编辑距离有一个n^2的dp,由于发现只找小于等于8的,所以搜旁 ...

  10. [POJ1595]欧拉线性筛(虽然这道题不需要...)

    欧拉线性筛. 对于它的复杂度的计算大概思考了很久. procedure build_prime; var i,j:longint; begin fillchar(vis,sizeof(vis),tru ...