Tarjan求LCA总结
Tarjan算法
向上标记法:
从x向上走到根节点,并标记所有经过的点
从y向上走到根节点,当第一次遇到已标记的节点时,就找到了LCA(x, y)
对于每个询问,向上标记法的时间复杂度最坏为O(n)
在深度遍历的任意时刻,我们将树中的节点分成三类:
1.我们已经访问了,但是我们还没有回溯的节点标记为1
2.我们访问过并且已经回溯到的,标记为2
3.没有访问过的节点
对于正在访问的节点x,他的父节点是标记为1的。若y是已经访问并且回溯的节点,则LCA(x, y)就是由y向上走,遇到的第一个标记为1的节点。
我们很容易想到可以使用并查集优化。
当一个节点标记为2时,我们把它合并到他父亲所在的集合(此时他的父亲一定标记为1且单独构成一个集合)
这就相当于每个完成回溯的几点都有一个指向它的父节点的指针,只需查询y所在集合的代表元素(并查集的get操作),就等价于从y向上一直走到一个开始递归但未回溯的节点,即LCA(x, y)
其实整个过程,自己在演草纸上画一遍就好了(建议换一篇博客看看)
#include<bits/stdc++.h>
using namespace std;
const int maxn = ;
struct shiki {
int y, net;
}e[maxn << ];
struct enkidu {
int self, id, nex;
}ask[maxn << ];
int n, m, s;
int lin[maxn], len = ;
int both[maxn], tot = ;
int fa[maxn], lca[maxn];
int vis[maxn]; inline int read() {
int x = , y = ;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + ch - '';
ch = getchar();
}
return x * y;
} inline void insert(int xx, int yy) {
e[++len].y = yy;
e[len].net = lin[xx];
lin[xx] = len;
} inline void add(int xx, int yy, int i) {
ask[++tot].self = yy;
ask[tot].id = i;
ask[tot].nex = both[xx];
both[xx] = tot;
} int getfather(int x) {
if(x == fa[x]) return x;
return fa[x] = getfather(fa[x]);
} void LCA_tarjan(int x) {
vis[x] = ;
for(int i = lin[x]; i; i = e[i].net) {
int to = e[i].y;
if(vis[to]) continue;
LCA_tarjan(to);
fa[to] = x;
}
for(int i = both[x]; i; i = ask[i].nex) {
int to = ask[i].self;
if(vis[to] == )
lca[ask[i].id] = getfather(to);
}
vis[x] = ;
} int main() {
memset(vis, , sizeof(vis));
n = read(), m = read(), s = read();
for(int i = ; i < n; ++i) {
int x, y;
x = read(), y = read();
insert(x, y);
insert(y, x);
}
for(int i = ; i <= n; ++i) fa[i] = i;
for(int i = ; i <= m; ++i) {
int x, y;
x = read(), y = read();
add(x, y, i);
add(y, x, i);
}
LCA_tarjan(s);
for(int i = ; i <= m; ++i)
cout << lca[i] << '\n';
return ;
}
关于板子,它救活了
Tarjan求LCA总结的更多相关文章
- 【Tarjan】洛谷P3379 Tarjan求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 倍增\ tarjan求lca
对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点). dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v ...
- Tarjan求LCA
LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m ...
- 详解使用 Tarjan 求 LCA 问题(图解)
LCA问题有多种求法,例如倍增,Tarjan. 本篇博文讲解如何使用Tarjan求LCA. 如果你还不知道什么是LCA,没关系,本文会详细解释. 在本文中,因为我懒为方便理解,使用二叉树进行示范. L ...
- 倍增 Tarjan 求LCA
...
- SPOJ 3978 Distance Query(tarjan求LCA)
The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 ro ...
- tarjan求lca的神奇
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- Tarjan求LCA(离线)
基本思想 把要求的点对保存下来,在dfs时顺带求出来. 方法 将每个已经遍历的点指向它回溯的最高节点(遍历它的子树时指向自己),每遍历到一个点就处理它存在的询问如果另一个点已经遍历,则lca就是另一个 ...
- 图论分支-倍增Tarjan求LCA
LCA,最近公共祖先,这是树上最常用的算法之一,因为它可以求距离,也可以求路径等等 LCA有两种写法,一种是倍增思想,另一种是Tarjan求法,我们可以通过一道题来看一看, 题目描述 欢乐岛上有个非常 ...
随机推荐
- [poj] 2396 [zoj] 1994 budget || 有源汇的上下界可行流
poj原题 zoj原题 //注意zoj最后一行不要多输出空行 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表不同赛区支出的矩阵.组委会曾经开会讨论过各类支出的总和,以及各赛区 ...
- 【CF edu 30 A. Chores】
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- [BJOI2006]狼抓兔子——最小割转对偶图最短路
其实这个题直接Dinic跑最小割可过. (小优化是: 无向图建网络流,一条边不用建成4条,可以正反容量都是边权即可.完全等价 ) [无效]网络流之转换对偶图 一个巧妙的事情是,如果建边合适的话,最小割 ...
- 【NOIP模拟赛】超级树 DP
这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了 ...
- git使用笔记(九)操作原理
By francis_hao Nov 27,2016 参考[1]的一张图已经把git的基本原理描述的很清楚了,如下: 下面以实例演示其过程,需要用到两个命令cat-file和ls-fil ...
- MySQL里执行SHOW INDEX结果中Cardinality的含义
今天在写一个Perl脚本,想自动化查找出MySQL数据库中可能无效的索引,于是根据朝阳的书上提到的一些规则,我来设计了一些判断方法,其中发现某个我想要的值就是SHOW INDEX FROM table ...
- Oulipo HDU - 1686
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e ...
- springboot之模板
转:http://jisonami.iteye.com/blog/2301387,http://412887952-qq-com.iteye.com/blog/2292402 整体步骤:(1) ...
- Bash 实例,第一部分
您可能要问:为什么要学习 Bash 编程?好,以下是几条令人信服的理由: 已经在运行它 如果查看一下,可能会发现:您现在正在运行 bash.因为 bash 是标准 Linux shell,并用于各种目 ...
- KVO-基本使用方法-底层原理探究-自定义KVO-对容器类的监听
书读百变,其义自见! 将KVO形式以代码实现呈现,通俗易懂,更容易掌握 :GitHub -链接如果失效请自动搜索:https://github.com/henusjj/KVO_base 代码中有详 ...