C. Gerald and Giant Chess
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on anh × w field,
and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs
to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?

The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the
rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.

Input

The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells
(1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).

Next n lines contain the description of black cells. The i-th
of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w)
— the number of the row and column of the i-th cell.

It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.

Output

Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo109 + 7.

Sample test(s)
input
3 4 2
2 2
2 3
output
2
input
100 100 3
15 16
16 15
99 88
output
545732279

题目大意:给出一个棋盘为h*w,如今要从(1,1)到(h,w)。当中有n个黑点不能走,问有多少种可能从左上到右下(1,1和h,w永远是能够走的)

计算左上到右下的方法假设不考虑黑点的话,sum=C(h+w)(h)

由于存在黑点i(x,y),所以用所以计算从左上到黑点的方法有sum[i] = C(x+y)(x)。当中假设在黑点的左上还有黑点j(u,v),那么应该减去sum[j]*C(x-u+y-v)(y-u)。去掉全部在左上的黑点的影响就能够得到由左上到第i点的真正的方法数

从左上的第一个黑点。一直计算到右下(h,w)

注意:

1、C(h+w)(h)的数据非常大。C(h+w)(h) = (h+w)!/( h!*w! )。用数组fac记录下每一个数的阶乘

2、计算组合数的时候有除法,能够用逆元来做a/b%mod = a*(b^(mod-2))%mod。计算i的阶乘的逆元inv[i],第在对阶乘求逆元的方法还有inv[ fac[i] ] = inv[ fac[i+1] ]*(i+1)%mod ,这种方法仅对连续的阶乘有效。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define LL __int64
const LL MOD = 1e9+7 ;
struct node{
LL x , y ;
}p[3100];
LL h , w , n ;
LL fac[310000] , inv[310000] ;
LL sum[3100] ;
int cmp(node a,node b) {
return a.x < b.x || (a.x == b.x && a.y < b.y) ;
}
LL pow(LL x,LL k) {
LL ans = 1 ;
while( k ) {
if( k&1 ) ans = ans*x%MOD ;
k = k>>1 ;
x = (x*x)%MOD ;
}
return ans ;
}
void init() {
LL i , j , c ;
fac[0] = inv[0] = 1 ;
for(i = 1 ; i <= h+w ; i++)
fac[i] = (fac[i-1]*i)%MOD ;
c = max(h,w) ;
inv[c] = pow(fac[c],MOD-2) ;
for(i = c-1 ; i > 0 ; i--) {
inv[i] = inv[i+1]*(i+1)%MOD ;
}
}
int main() {
LL i , j ;
LL ans ;
while( scanf("%I64d %I64d %I64d", &h, &w, &n) != EOF ) {
init() ;
for(i = 0 ; i < n ; i++)
scanf("%I64d %I64d", &p[i].x, &p[i].y) ;
p[n].x = h ; p[n++].y = w ;
sort(p,p+n,cmp) ;
int x1 , y1 , x2 , y2 ;
for(i = 0 ; i < n ; i++) {
x1 = p[i].x-1 ; y1 = p[i].y-1 ;
sum[i] = fac[x1+y1]*inv[x1]%MOD*inv[y1]%MOD ;
for(j = 0 ; j < i ; j++) {
if( p[j].x <= p[i].x && p[j].y <= p[i].y ) {
x2 = x1 - p[j].x+1 ; y2 = y1 - p[j].y+1 ;
sum[i] = (sum[i]-fac[x2+y2]*inv[x2]%MOD*inv[y2]%MOD*sum[j]%MOD)%MOD ;
if( sum[i] <= 0 ) sum[i] = (sum[i]+MOD)%MOD;
}
}
}
printf("%I64d\n", sum[n-1]) ;
}
return 0 ;
}

codeforces(559C)--C. Gerald and Giant Chess(组合数学)的更多相关文章

  1. CodeForces 559C Gerald and Giant Chess

    C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  2. dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess

    Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...

  3. Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP

    C. Gerald and Giant Chess Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  4. 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)

    [题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...

  5. Gerald and Giant Chess

    Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  6. CF559C Gerald and Giant Chess

    题意 C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input ...

  7. E. Gerald and Giant Chess

    E. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes2015-09-0 ...

  8. Codeforces 559C Gerald and Giant Chess【组合数学】【DP】

    LINK 题目大意 有一个wxh的网格,上面有n个黑点,问你从(1,1)走到(w,h)不经过任何黑点的方案数 思路 考虑容斥 先把所有黑点按照x值进行排序方便计算 \(dp_{i}\)表示从起点走到第 ...

  9. Codeforces Round #313 (Div. 2) E. Gerald and Giant Chess (Lucas + dp)

    题目链接:http://codeforces.com/contest/560/problem/E 给你一个n*m的网格,有k个坏点,问你从(1,1)到(n,m)不经过坏点有多少条路径. 先把这些坏点排 ...

随机推荐

  1. 可用性的维度(5E)

    可用性的维度 当我检查可用性文献时,我发现可用软件包含如用户友好.易学.可发现性.质量.有用的和阻止错误.在可用性工程中, Jakob Nielsen给出一个产品的五个属性:易学性.效率.可记忆性.容 ...

  2. Android2017进阶知识点、面试题及答案(精选版)

    前言 没啥好说的,撸起袖子就是干吧! 1 2 JAVA 相关 1.静态内部类.内部类.匿名内部类,为什么内部类会持有外部类的引用?持有的引用是this?还是其它? 静态内部类:使用static修饰的内 ...

  3. D3.js系列——布局:弦图和集群图/树状图

    一.弦图 1.弦图是什么 弦图(Chord),主要用于表示两个节点之间的联系的图表.两点之间的连线,表示谁和谁具有联系. 2.数据 初始数据为: var city_name = [ "北京& ...

  4. 【AS3 Coder】任务四:噪音的魅力(上)

    使用框架:AS3任务描述:使用AS3中BitmapData的noise方法以及perlinNoise方法构建自然景观效果以及其他一些比较cool的效果难度系数:2 本文章源码下载:www.iamsev ...

  5. maven的安装和eclipse的配置以及构建mahout基本项目

    maven介绍在此略过 下载地址: 点击打开链接 windows下载xxx-bin.zip文件 linux下载xxx-bin.tar.gz 这里以windows为例 下载完成直接解压到一个目录下 计算 ...

  6. go 中的pacage 名称 和import {}中的名称

    参考: https://groups.google.com/forum/#!topic/golang-nuts/oawcWAhO4Ow Hi, Nan Xiao <xiaona...@gmail ...

  7. perl学习笔记——文件测试

    文件测试主要用于查看如文件是否存在.文件大小.文件更新时间等信息. 文件测试操作符 -e  测试文件是否存在: die "Oops!A file called '$filename' alr ...

  8. 解决Linux下3T硬盘分区只有2T(2199G)可用

    分区转换成GPT即可 sudo parted /dev/sdb 将MBR硬盘格式化为GPT mklabel gpt 之后可以看一下状态 print 整个硬盘空间只分一个区 mkpart primary ...

  9. bjxdpkdzvaciu

    xufutwovrcgwcdjrmkmsmoiemsgsfk

  10. python中的多进程处理

    转载于:http://blog.csdn.net/jj_liuxin/article/details/3564365 帮助文档见https://docs.python.org/2.7/library/ ...