hdu 1053 Entropy (哈夫曼树)
Entropy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3648 Accepted Submission(s): 1451
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
END
//0MS 256K 2011 B G++
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef struct Huffman{
int deep; //深度
int freq; //权重
Huffman *left,*right;
friend bool operator <(Huffman a,Huffman b){ //优先队列
return a.freq>b.freq;
}
}Huffman;
Huffman trie[];
Huffman *root;
int len,id,sum;
int cnt;
priority_queue<Huffman>Q;//优先队列 void huffman()
{
sum=;
root=(Huffman*)malloc(sizeof(Huffman)); //打酱油头指针
for(int i=;i<id;i++)Q.push(trie[i]);
while(Q.size()>) //建立huffman树
{
Huffman *h1=(Huffman*)malloc(sizeof(Huffman));
*h1=Q.top();
Q.pop();
Huffman *h2=(Huffman*)malloc(sizeof(Huffman));
*h2=Q.top();
Q.pop(); Huffman h3;
h3.left=h1;
h3.right=h2;
h3.freq=h1->freq+h2->freq;
Q.push(h3);
}
*root=Q.top();
Q.pop();
root->deep=; queue<Huffman>q;//计算结果的队列
q.push(*root);
while(!q.empty())
{
Huffman ht=q.front();
q.pop();
if(ht.left!=NULL){
ht.left->deep=ht.deep+;
q.push(*ht.left);
}
if(ht.right!=NULL){
ht.right->deep=ht.deep+;
q.push(*ht.right);
}
if(!ht.left && !ht.right){ //叶子节点
sum+=ht.deep*ht.freq;
}
}
} int main()
{
char c[];
while(scanf("%s",c)!=EOF)
{
if(strcmp(c,"END")==) break;
len=strlen(c);
c[len]='!';
sort(c,c+len);
cnt=;
id=;
for(int i=;i<=len;i++){
if(c[i]!=c[i-]){
trie[id++].freq=cnt;
cnt=;
}else cnt++;
}
if(id==) printf("%d %d 8.0\n",len*,len);
else{
huffman();
printf("%d %d %.1lf\n",len*,sum,len*8.0/sum);
}
}
return ;
}
hdu 1053 Entropy (哈夫曼树)的更多相关文章
- [POJ 1521]--Entropy(哈夫曼树)
题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS Memory Limit: 10000K Description A ...
- HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others) ...
- 两个队列+k叉哈夫曼树 HDU 5884
// 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...
- hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 贪心(哈夫曼树):HDU 5884 sort
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2QAAAKACAIAAAB8KCy/AAAgAElEQVR4nOy9a5Adx3UmWL+kHxuekU ...
- HDU 5884 Sort (二分+k叉哈夫曼树)
题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...
- hdu 2527哈夫曼树(二叉树的运用)
#include<stdio.h> #include<string.h> #define N 100 #define INF 2000000000 int b[N]; c ...
- 哈夫曼树:HDU5884-Sort(队列、哈夫曼树)
Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) 题目链接:http://ac ...
- puk1521 赫夫曼树编码
Description An entropy encoder is a data encoding method that achieves lossless data compression by ...
随机推荐
- jquery点击按钮复制内容
做移动端的项目遇到一个需求要点击按钮复制dom里的内容,看了很多资料显示必须textarea或者input里的内容才能简单复制,还有就是用插件的了,最终都因为遇到各种问题放弃,最终选择了最简单的点击复 ...
- laravel 中出现SQLSTATE[HY000] [2002] 如何解决?
在日常开发中总是难免遇到各式各样的错误,还有许多错误常常是重复出现的 以下是报错信息! SQLSTATE[HY000] [2002] ������ӷ���һ��ʱ���û���ȷ�
- ExceL按记录导出Txt 工具
根据客户要求,开发此工具,每一条记录改出一个Txt文本,文本名取其中一字段数据
- 2.3 进程控制之exec函数族
学习目标:学习使用exec函数族的重要的几个函数 一.引言 进程通过exec函数根据指定的文件名或目录名执行另一个可执行文件,当进程调用exec函数时,该进程的数据段.代码段和堆栈段完全被新程序替换 ...
- hive表格取差集
hive 求两个集合的差集 业务场景是这样的,这里由两个hive表格A和B A的形式大概是这样的:uid B的形式大概是这样的:uid 我想要得到存在A中但是不存在B中的uid 具体代码如下 sele ...
- (杭电 1097)A hard puzzle
A hard puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- CUBLAS基础实验
一.概述 最近在试图进行cuda并行编程,目标是编写一段矩阵计算代码,将计算结果存储进入GPU的缓冲区当中,并在达到某些要求后强制刷新缓冲区,取得计算结果. 但是考虑时间紧任务重的状况和实际的性能要求 ...
- python2.7入门---函数
不是说现在的高级程序员都是秉承着用最少的代码实现功能么,那么,怎么才能使代码少呢?好吧,不装哔~~~了,这一波操作我说不来,咱们直接来看内容.首先,函数是组织好的,可重复使用的,用来实现单一, ...
- MVC中路由的修改和浏览器的地址参数
在 ASP.NET MVC 应用程序中,它是更常见的做法在作为路由数据 (像我们一样与身份证上面) 比将它们作为查询字符串传递的参数中传递. ) { return HttpUtility.HtmlEn ...
- asp.net mvc 无刷新加载
1.视图(index) <!--start--> <div data-am-widget="list_news" class="am-list-news ...