hdu 1053 Entropy (哈夫曼树)
Entropy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3648 Accepted Submission(s): 1451
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
END
//0MS 256K 2011 B G++
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef struct Huffman{
int deep; //深度
int freq; //权重
Huffman *left,*right;
friend bool operator <(Huffman a,Huffman b){ //优先队列
return a.freq>b.freq;
}
}Huffman;
Huffman trie[];
Huffman *root;
int len,id,sum;
int cnt;
priority_queue<Huffman>Q;//优先队列 void huffman()
{
sum=;
root=(Huffman*)malloc(sizeof(Huffman)); //打酱油头指针
for(int i=;i<id;i++)Q.push(trie[i]);
while(Q.size()>) //建立huffman树
{
Huffman *h1=(Huffman*)malloc(sizeof(Huffman));
*h1=Q.top();
Q.pop();
Huffman *h2=(Huffman*)malloc(sizeof(Huffman));
*h2=Q.top();
Q.pop(); Huffman h3;
h3.left=h1;
h3.right=h2;
h3.freq=h1->freq+h2->freq;
Q.push(h3);
}
*root=Q.top();
Q.pop();
root->deep=; queue<Huffman>q;//计算结果的队列
q.push(*root);
while(!q.empty())
{
Huffman ht=q.front();
q.pop();
if(ht.left!=NULL){
ht.left->deep=ht.deep+;
q.push(*ht.left);
}
if(ht.right!=NULL){
ht.right->deep=ht.deep+;
q.push(*ht.right);
}
if(!ht.left && !ht.right){ //叶子节点
sum+=ht.deep*ht.freq;
}
}
} int main()
{
char c[];
while(scanf("%s",c)!=EOF)
{
if(strcmp(c,"END")==) break;
len=strlen(c);
c[len]='!';
sort(c,c+len);
cnt=;
id=;
for(int i=;i<=len;i++){
if(c[i]!=c[i-]){
trie[id++].freq=cnt;
cnt=;
}else cnt++;
}
if(id==) printf("%d %d 8.0\n",len*,len);
else{
huffman();
printf("%d %d %.1lf\n",len*,sum,len*8.0/sum);
}
}
return ;
}
hdu 1053 Entropy (哈夫曼树)的更多相关文章
- [POJ 1521]--Entropy(哈夫曼树)
题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS Memory Limit: 10000K Description A ...
- HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others) ...
- 两个队列+k叉哈夫曼树 HDU 5884
// 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...
- hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 贪心(哈夫曼树):HDU 5884 sort
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2QAAAKACAIAAAB8KCy/AAAgAElEQVR4nOy9a5Adx3UmWL+kHxuekU ...
- HDU 5884 Sort (二分+k叉哈夫曼树)
题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...
- hdu 2527哈夫曼树(二叉树的运用)
#include<stdio.h> #include<string.h> #define N 100 #define INF 2000000000 int b[N]; c ...
- 哈夫曼树:HDU5884-Sort(队列、哈夫曼树)
Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) 题目链接:http://ac ...
- puk1521 赫夫曼树编码
Description An entropy encoder is a data encoding method that achieves lossless data compression by ...
随机推荐
- 使用zxing二维码识别
1.多二维码识别 (同一张图片中多二维码识别) 直接上代码舒服: pom文件: <!-- QR Code --> <dependency> <groupId>com ...
- (转)老生常谈-从输入url到页面展示到底发生了什么
刚开始写这篇文章还是挺纠结的,因为网上搜索"从输入url到页面展示到底发生了什么",你可以搜到一大堆的资料.而且面试这道题基本是必考题,二月份面试的时候,虽然知道这个过程发生了什么 ...
- MySQL快速生成连续整数
很多时候需要用到连续的id进行数据对比,如判断是否连续等问题.那么,生成连续整数的方式有多种,首先容易想到的是逐步循环,如果想生成1kw条记录,则需要循环1kw次进行插入,那么有没有其他方式呢,效率相 ...
- Python协程中使用上下文
在Python 3.7中,asyncio 协程加入了对上下文的支持.使用上下文就可以在一些场景下隐式地传递变量,比如数据库连接session等,而不需要在所有方法调用显示地传递这些变量.使用得当的话, ...
- node Cookie
代码: const express = require('express'); const cookieParser = require('cookie-parser'); const app = e ...
- C++ vector的reserve和resize详解
vector 的reserve增加了vector的capacity,但是它的size没有改变!而resize改变了vector的capacity同时也增加了它的size!原因如下: rese ...
- GET TIME
基本形式 GET TIME [FIELD tim]. オプション: ... FIELD tim 機能 FIELD オプションを使用しない場合. 日付および時刻のシステム項目 sy-datlo.sy-d ...
- oracle查询优化,存储过程select表循环插入另一个表,以及索引重建
查询语句pl/sql中用F5优化语句 ORACLE的explain plan工具的作用只有一个,获取语句的执行计划1.语句本身并不执行,ORACLE根据优化器产生理论上的执行计划2.语句的分析结果存放 ...
- 指纹识别人脸识别 iOS
//1.判断iOS8及以后的版本 if([UIDevice currentDevice].systemVersion.doubleValue >= 8.0){ //从iPhone5S开始,出现指 ...
- C#操作Excel文件(转)
摘要:本文介绍了Excel对象.C#中的受管代码和非受管代码,并介绍了COM组件在.net环境中的使用. 关键词:受管代码:非受管代码:Excel对象:动态连接库 引言 Excel是微软公司办公自动化 ...