Entropy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3648    Accepted Submission(s): 1451

Problem Description
An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not benefit from further attempts at entropy encoding.

English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.

In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.

Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.

As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.

There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.

 
Input
The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled by a line containing only the word “END” as the text string. This line should not be processed.
 
Output
For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.
 
Sample Input
AAAAABCD
THE_CAT_IN_THE_HAT
END
 
Sample Output
64 13 4.9
144 51 2.8
 
Source
 
Recommend
We have carefully selected several similar problems for you:  1054 1052 1301 1055 1269 
 
 //0MS    256K    2011 B    G++
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef struct Huffman{
int deep; //深度
int freq; //权重
Huffman *left,*right;
friend bool operator <(Huffman a,Huffman b){ //优先队列
return a.freq>b.freq;
}
}Huffman;
Huffman trie[];
Huffman *root;
int len,id,sum;
int cnt;
priority_queue<Huffman>Q;//优先队列 void huffman()
{
sum=;
root=(Huffman*)malloc(sizeof(Huffman)); //打酱油头指针
for(int i=;i<id;i++)Q.push(trie[i]);
while(Q.size()>) //建立huffman树
{
Huffman *h1=(Huffman*)malloc(sizeof(Huffman));
*h1=Q.top();
Q.pop();
Huffman *h2=(Huffman*)malloc(sizeof(Huffman));
*h2=Q.top();
Q.pop(); Huffman h3;
h3.left=h1;
h3.right=h2;
h3.freq=h1->freq+h2->freq;
Q.push(h3);
}
*root=Q.top();
Q.pop();
root->deep=; queue<Huffman>q;//计算结果的队列
q.push(*root);
while(!q.empty())
{
Huffman ht=q.front();
q.pop();
if(ht.left!=NULL){
ht.left->deep=ht.deep+;
q.push(*ht.left);
}
if(ht.right!=NULL){
ht.right->deep=ht.deep+;
q.push(*ht.right);
}
if(!ht.left && !ht.right){ //叶子节点
sum+=ht.deep*ht.freq;
}
}
} int main()
{
char c[];
while(scanf("%s",c)!=EOF)
{
if(strcmp(c,"END")==) break;
len=strlen(c);
c[len]='!';
sort(c,c+len);
cnt=;
id=;
for(int i=;i<=len;i++){
if(c[i]!=c[i-]){
trie[id++].freq=cnt;
cnt=;
}else cnt++;
}
if(id==) printf("%d %d 8.0\n",len*,len);
else{
huffman();
printf("%d %d %.1lf\n",len*,sum,len*8.0/sum);
}
}
return ;
}

hdu 1053 Entropy (哈夫曼树)的更多相关文章

  1. [POJ 1521]--Entropy(哈夫曼树)

    题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS    Memory Limit: 10000K Description A ...

  2. HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others)   ...

  3. 两个队列+k叉哈夫曼树 HDU 5884

    // 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...

  4. hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. 贪心(哈夫曼树):HDU 5884 sort

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2QAAAKACAIAAAB8KCy/AAAgAElEQVR4nOy9a5Adx3UmWL+kHxuekU ...

  6. HDU 5884 Sort (二分+k叉哈夫曼树)

    题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...

  7. hdu 2527哈夫曼树(二叉树的运用)

    #include<stdio.h> #include<string.h> #define N  100 #define INF  2000000000  int b[N]; c ...

  8. 哈夫曼树:HDU5884-Sort(队列、哈夫曼树)

    Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) 题目链接:http://ac ...

  9. puk1521 赫夫曼树编码

    Description An entropy encoder is a data encoding method that achieves lossless data compression by ...

随机推荐

  1. MyEclipse格式化JSP代码,其中Javascript无法格式化的原因

    MyEclipse格式化JSP代码,其中Javascript无法格式化的原因: 可能是JSP页面代码有错误的地方,而且可能是一个很微小的错误,比如多写了一个标点符号,这个需要仔细检查,包括HTML.C ...

  2. 封装localstorage方法

    //封装操作localstorage本地存储的方法 var storage = { //存储 set(key, value) { localStorage.setItem(key, JSON.stri ...

  3. 使用Python第三方库生成二维码

    本文主要介绍两个可用于生成二维码的Python第三方库:MyQR和qrcode. MyQR的使用: 安装: pip install MyQR 导入: from MyQR import myqr imp ...

  4. vue入门——基本概念

    1. 挂载点,模板,实例的关系? 首先附上一个基本demo: <!DOCTYPE html> <html lang="en"> <head> & ...

  5. 【TCP/IP实现磁盘资源的分享-----ISCSI(互联网最小应用程序接口)】

    Iscsi server: 首先把多块磁盘合并为RAID5,便于后期iscis client访问以及服务端的管理 安装 targted服务端包,以及targtedcli创建iscsi TCP/IP共享 ...

  6. vue服务端渲染浏览器端缓存(keep-alive)

    在使用服务器端渲染时,除了服务端的接口缓存.页面缓存.组建缓存等,浏览器端也避免不了要使用缓存,减少页面的重绘. 这时候我们就会想到vue的keep-alive,接下来我们说一下keep-alive的 ...

  7. koa2 mongdb 做后端接口的小demo

    现在前端全栈里面有一种技术栈比较火 前端使用 vue 或者react 后端使用 koa2 mysql数据库 或者mongdb做数据储存 但是基本这样的全栈教程 都要收费 收费就收费吧 但是 有没有遇到 ...

  8. Linux下编译出现undefined reference to ‘pthread_create’问题解决

    1.代码 /* * File: HeartPackageSendAgent.cpp * Author: Pangxiaojian * * * 主要实现:向服务器发送心跳包,每5s向服务器发送一个心跳包 ...

  9. python基础知识 -- set集合

    Set集合:是Python的一个基本数据类型.一般不是很常用.Set中的元素是不重复的,无序的,里面的元素必须是可hash的(int,str,tuple,bool).我们可以这样来计Set就是dict ...

  10. Leecode刷题之旅-C语言/python-9.回文数

    /* * @lc app=leetcode.cn id=9 lang=c * * [9] 回文数 * * https://leetcode-cn.com/problems/palindrome-num ...