【题目大意】

若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:
F[1][1]=1
F[i,j]=a*F[i][j-1]+b (j!=1)①
F[i,1]=c*F[i-1][m]+d (i!=1)②
递推式中a,b,c,d都是给定的常数。求F[n][m]。

【思路】

磨了一个早上,然而UOJ上的额外数据还没有过去..BZOJ上已AC先放上来,后续慢慢磨……

*还有一点,最后输出答案的时候要先+MOD再%MOD。

*MOD要勤快一点,不然会爆。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MOD 1000000007
using namespace std;
typedef long long ll;
const int MAXN=+;
struct node
{
ll uni,ord;//uni表示a≠1,ord表示a=1
}n,m;
ll a,b,c,d; ll quick(ll x,ll p)
{
ll res=p,retu=,now=x;
while (res>)
{
if (res&) retu=(retu*now) % MOD;
now=(now*now) % MOD;
res>>=;
}
return retu;
} ll ni(ll x)
{
return quick(x,MOD-);
} node get_value(char str[])
{
int len=strlen(str);
node ret=(node){,};
for (int i=;i<len;i++)
{
ret.uni=((ret.uni*)%(MOD-)+str[i]-'')%(MOD-);
ret.ord=((ret.ord*)%MOD+str[i]-'')%MOD;
}
return ret;
} void init()
{
char strm[MAXN],strn[MAXN];
scanf("%s%s",strn,strm);
n=get_value(strn);
m=get_value(strm);
scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
} void get_ans()
{
ll f;//=f[n+1][1]
if (a==)
{
ll D=((((c*(m.ord-))%MOD)*b)%MOD+d)%MOD;
if (c==) f=(+n.ord*D)%MOD;
else
{
ll cn=quick(c,n.uni);
f=(cn+(D*(cn-)*ni(c-)%MOD))%MOD;
}
}
if (a!=)
{
ll am=quick(a,m.uni-);
ll A=(am*c)%MOD;
ll B=(((((b*c)%MOD*(am-))%MOD*ni(a-)))%MOD+d)%MOD;
ll An=quick(A,n.uni);
f=An+((B*(An-)%MOD)*ni(A-))%MOD;
}
printf("%lld",((f-d)*ni(c)%MOD+MOD)%MOD);
} int main()
{
init();
get_ans();
return ;
}

【费马小定理+快速幂+逆元】BZOJ3240-[NOI2013]矩阵游戏的更多相关文章

  1. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  2. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  4. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  5. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  6. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

  7. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  8. 牛客训练四:Applese 涂颜色(费马小定理+快速幂)

    题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...

  9. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

随机推荐

  1. POJ2594:Treasure Exploration(Floyd + 最小路径覆盖)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 9794   Accepted: 3 ...

  2. ng依赖注入

    依赖注入 1.注入器在组件的构造函数中写服务constructor(private httpreq:HttpService) { } 2.提供器 providers: [HttpService],

  3. 牛客 国庆七天乐 day1 L

    https://www.nowcoder.com/acm/contest/201/L 题意:给你两条平行的直线和n个圆,在直线上面行走和在圆上和在圆内行走不需要耗费体力,除了这些区域外平面上经过任意两 ...

  4. mybatis的一些特殊符号标识(大于,小于,等于,不等于)

    特殊字符   替代符号(红色基本为常用的)    &            &      <            <      >            > ...

  5. SSL步骤

    SSL步骤 被认证的服务器 1.创建keystore 2.创建信任证书 3.导出信任证书供客户端使用 客户端 1.创建keystore(如果不存在) 2.导入信任证书

  6. 【BZOJ1857】【SCOI2010】传送带 [三分]

    传送带 Time Limit: 1 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 在一个2维平面上有两条传送带,每一条传送 ...

  7. 【CF1027F】Session in BSU(dsu,基环树)

    题意:给出n场考试,每场考试有2天可以通过(第ai与bi天).每天最多参加一场考试,现在要求所有考试全部通过的最小天数 n<=1e6,1<=a[i]<b[i]<1e9 思路:F ...

  8. Logistic函数

    Logistic函数(又称sigmoid函数)        Logistic函数或Logistic曲线是一种常见的S形函数,它是皮埃尔·弗朗索瓦·韦吕勒在1844或1845年在研究它与人口增长的关系 ...

  9. UVa 12265 贩卖土地 单调栈

    题意 输入一个\(n\times m\)的矩阵,每个格子可能是空地,也可能是沼泽.对于每个空地格子,求出以它为右下角的空矩形的最大周长,然后统计每个周长出现了多少次. 思路 对于 每一行 每两个沼泽之 ...

  10. POJ1019 Number Sequence

    Number Sequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36256   Accepted: 10461 ...